1,681
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: e2325572 | Received 03 Jan 2024, Accepted 20 Feb 2024, Published online: 11 Mar 2024

References

  • Sing SL, Yeong WY. Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments. Virtual Phys Prototyp. 2020;15(3):359–370. doi: 10.1080/17452759.2020.1779999
  • Zhu Y, Zhang K, Meng Z, et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nat Mater. 2022;21:1258–1262. doi: 10.1038/s41563-022-01359-2
  • Song T, Chen Z, Cui X, et al. Strong and ductile titanium–oxygen–iron alloys by additive manufacturing. Nature. 2023;618:63–68. doi: 10.1038/s41586-023-05952-6
  • Zhang YN, Groden C, Nyberg E, et al. W7Ni3Fe-Ti6Al4V bimetallic layered structures via directed energy deposition. Virtual Phys Prototyp. 2023;18(1):e2137048. doi: 10.1080/17452759.2022.2137048
  • Sun Z, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing. Nat Commun. 2022;13:4361. doi: 10.1038/s41467-022-31969-y
  • Fleming TG, Rees DT, Marussi S, et al. In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys. Additive Manufacturing. 2023;71:103579. doi: 10.1016/j.addma.2023.103579
  • Ren Z, Gao L, Clark SJ, et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science. 2023;379:89–94. doi: 10.1126/science.add4667
  • Huang Y, Fleming TG, Clark S, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat Commun. 2022;13:1170. doi: 10.1038/s41467-022-28694-x
  • Rees DT, Leung CLA, Elambasseril J, et al. In situ X-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters. Mater Des. 2023;231:112031. doi: 10.1016/j.matdes.2023.112031
  • Leung CLA., Marussi S, Atwood R, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun. 2018;9:1355. doi: 10.1038/s41467-018-03734-7
  • Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science. 2019;363:849–852. doi: 10.1126/science.aav4687
  • Hocine S, Van Swygenhoven H, Van Petegem S, et al. Operando X-ray diffraction during laser 3D printing. Mater Today. 2020;34:30–40. doi: 10.1016/j.mattod.2019.10.001
  • Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science. 2020;370:1080–1086. doi: 10.1126/science.abd1587
  • Gordon JV, Narra SP, Cunningham R, et al. Defect structure process maps for laser powder bed fusion additive manufacturing. Additive Manufacturing. 2020;36:101552. doi: 10.1016/j.addma.2020.101552
  • Gan Z, Kafka OL, Parab N, et al. Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Commun. 2021;12:2379. doi: 10.1038/s41467-021-22704-0
  • Wu ZW, Wu SC, Duan Y, et al. In situ X-ray tomography of fracture behaviour in low-porosity L-PBF AlSi10Mg alloy with laser shock peening. Virtual Phys Prototyp. 2023;18(1):e2273955. doi: 10.1080/17452759.2023.2273955
  • Rao J, Sing SL, Liu P, et al. Non-destructive testing of metal-based additively manufactured parts and processes: a review. Virtual Phys Prototyp. 2023;18(1):e2266658. doi: 10.1080/17452759.2023.2266658
  • Nielsen M-A, Gloy JF, Lott D, et al. Automatic melt pool recognition in X-ray radiography images from laser-molten Al alloy. J Mat Res Technol. 2022;21:3502–3513. doi: 10.1016/j.jmrt.2022.10.121
  • Scime L, Beuth J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufact. 2019;25:151–165. doi: 10.1016/j.addma.2018.11.010
  • Zhang Y, Hong GS, Ye D, et al. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater Des. 2018;156:458–469. doi: 10.1016/j.matdes.2018.07.002
  • Aminzadeh M, Kurfess TR. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J Intell Manuf. 2019;30:2505–2523. doi: 10.1007/s10845-018-1412-0
  • Grasso M, Laguzza V, Semeraro Q, et al. In-Process monitoring of selective laser melting: spatial detection of defects Via image data analysis. J Manufact Sci Eng. 2017;139(5):051001. doi: 10.1115/1.4034715
  • Yadav P, Singh VK, Joffre T, et al. Inline drift detection using monitoring systems and machine learning in selective laser melting. Adv Eng Mater. 2020;22:2000660. doi: 10.1002/adem.202000660
  • Zhang B, Liu S, Shin YC. In-Process monitoring of porosity during laser additive manufacturing process. Additive Manufact. 2019;28:497–505. doi: 10.1016/j.addma.2019.05.030
  • Scime L, Siddel D, Baird S, et al. Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation. Additive Manufact. 2020;36:101453. doi: 10.1016/j.addma.2020.101453
  • Shevchik SA, Kenel C, Leinenbach C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Additive Manufact. 2018;21:598–604. doi: 10.1016/j.addma.2017.11.012
  • Falk T, Mai D, Bensch R, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:67–70. doi: 10.1038/s41592-018-0261-2
  • Manifold B, Men S, Hu R, et al. A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. Nat Mach Intell. 2021;3:306–315. doi: 10.1038/s42256-021-00309-y
  • Bilodeau A, Delmas CVL, Parent M, et al. Microscopy analysis neural network to solve detection, enumeration and segmentation from image-level annotations. Nat Mach Intell. 2022;4:455–466. doi: 10.1038/s42256-022-00472-w
  • Zhang J, Lyu T, Hua Y, et al. Image segmentation for defect analysis in laser powder Bed fusion: deep data mining of X-Ray photography from recent literature. Integr Mater Manuf Innov. 2022;11:418–432. doi: 10.1007/s40192-022-00272-5
  • Dong W, Lian J, Yan C, et al. Deep-Learning-Based segmentation of keyhole in In-situ X-ray imaging of laser powder Bed fusion. Materials (Basel). 2024;17(2):510. doi: 10.3390/ma17020510
  • Carter FM, Kozjek D, Porter C, et al. Melt pool instability detection using coaxial photodiode system validated by in-situ X-ray imaging. CIRP Ann. 2023;72:205–208. doi: 10.1016/j.cirp.2023.03.031
  • Bhagavath S, Gong Z, Wigger T, et al. Mechanisms of gas and shrinkage porosity formation in solidifying shear bands. J Mater Process Technol. 2022;299:117338. doi: 10.1016/j.jmatprotec.2021.117338
  • Li W, Zhang L, Wu C, et al. A new lightweight deep neural network for surface scratch detection. Int J Adv Manuf Technol. 2022;123:1999–2015. doi: 10.1007/s00170-022-10335-8
  • Chen J, Sasaki H, Lai H, et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat Methods. 2021;18:678–687. doi: 10.1038/s41592-021-01155-x
  • Bouchard C, Wiesner T, Deschênes A, et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. Nat Mach Intell. 2023;5:830–844. doi: 10.1038/s42256-023-00689-3
  • He K, et al. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  • Diakogiannis FI, Waldner F, Caccetta P, et al. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogramm Remote Sens. 2020;162:94–114. doi: 10.1016/j.isprsjprs.2020.01.013
  • Li W, Zhang L, Wu C, et al. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence. Int J Adv Manuf Technol.. 2021;112:853–865. doi: 10.1007/s00170-020-06394-4
  • Huang L, Chen H, Liu T, et al. Self-supervised learning of hologram reconstruction using physics consistency. Nat Mach Intell. 2023;5:895–907. doi: 10.1038/s42256-023-00704-7
  • Ko C-N. Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm. Eng Appl Artif Intell. 2012;25:533–543. doi: 10.1016/j.engappai.2011.09.019
  • Kingma DP, Jimmy B. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
  • Vlachas PR, Arampatzis G, Uhler C, et al. Multiscale simulations of complex systems by learning their effective dynamics. Nat Mach Intell. 2022;4:359–366. doi: 10.1038/s42256-022-00464-w
  • Lin T-Y, et al. Focal loss for dense object detection. IEEE International Conference on Computer Vision. 2017.
  • Girshick R, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition. 2014.
  • Jadon S. A survey of loss functions for semantic segmentation. IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. 2020.
  • Selvaraju, R. R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. IEEE International Conference on Computer Vision, 2017.
  • Zhu M, Feng Z, Stanković L, et al. A probe-feature for specific emitter identification using axiom-based grad-CAM. Signal Processing. 2022;201:108685. doi: 10.1016/j.sigpro.2022.108685
  • Zhang ZY, Li JK, Cheng T, et al. Simultaneously enhanced strength and ductility of AlSi7Mg alloy fabricated by laser powder bed fusion with on-line static magnetic field. Virtual Phys Prototyp. 2023;18(1):e2161918. doi: 10.1080/17452759.2022.2161918