502
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel layer-based optimization method for stabilizing the early printing stage of LPBF process

, , , , , & show all
Article: e2325578 | Received 12 Nov 2023, Accepted 25 Feb 2024, Published online: 19 Mar 2024

References

  • Kruth JP, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 2007;56(2):730–759. doi: 10.1016/j.cirp.2007.10.004
  • Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform. 2014;23(6):1917–1928. doi: 10.1007/s11665-014-0958-z
  • Rombouts M, Kruth JP, Froyen L, et al. Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann. 2006;55(1):187–192. doi: 10.1016/S0007-8506(07)60395-3
  • Li B, Han C, Lim CWJ, et al. Interface formation and deformation behaviors of an additively manufactured nickel-aluminum-bronze/15-5 PH multimaterial via laser-powder directed energy deposition. Mater Sci Eng A. 2022;829:142101. doi: 10.1016/j.msea.2021.142101
  • Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17(2):329–365. doi: 10.1080/17452759.2022.2028343
  • Kruth JP, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1):616–622. doi: 10.1016/j.jmatprotec.2003.11.051
  • Mumtaz KA, Erasenthiran P, Hopkinson N. High density selective laser melting of Waspaloy®. J Mater Process Technol. 2008;195(1):77–87. doi: 10.1016/j.jmatprotec.2007.04.117
  • Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci. 2007;254(4):980–983. doi: 10.1016/j.apsusc.2007.08.046
  • Morgan RH, Papworth AJ, Sutcliffe C, et al. High density net shape components by direct laser re-melting of single-phase powders. J Mater Sci. 2002;37(15):3093–3100. doi: 10.1023/A:1016185606642
  • Grum J, Slabe JM. Effect of laser-remelting of surface cracks on microstructure and residual stresses in 12Ni maraging steel. Appl Surf Sci. 2006;252(13):4486–4492. doi: 10.1016/j.apsusc.2005.06.060
  • Xiao Z, Yu W, Fu H, et al. Recent progress on microstructure manipulation of aluminium alloys manufactured via laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2125880. doi: 10.1080/17452759.2022.2125880
  • Koh HK, Moo JGS, Sing SL, et al. Use of fumed silica nanostructured additives in selective laser melting and fabrication of steel matrix nanocomposites. Materials (Basel). 2022;15(5):1869. doi: 10.3390/ma15051869
  • Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process. Optik (Stuttg). 2020;208:164128. doi: 10.1016/j.ijleo.2019.164128
  • Wang X, Lough CS, Bristow DA, et al. A layer-to-layer control-oriented model for selective laser melting. In: Proceedings of the American Control Conference (ACC). 2020 July. p. 481–486.
  • Huang S, Narayan RL, Tan JHK, et al. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion. Acta Mater. 2021;204:116522. doi: 10.1016/j.actamat.2020.116522
  • Huang S, Kumar P, Lim CWJ, et al. Fracture behavior of PH15-5 stainless steel manufactured via directed energy deposition. Mater Des. 2023;235:112421. doi: 10.1016/j.matdes.2023.112421
  • Alimardani M, Toyserkani E, Huissoon JP, et al. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental–numerical investigation. Opt Lasers Eng. 2009;47(11):1160–1168. doi: 10.1016/j.optlaseng.2009.06.010
  • Tang P, Wang S, Long M, et al. Thermal behavior during the selective laser melting process of Ti-6Al-4V powder in the point exposure scan pattern. Metall Mater Trans B. 2019;50(6):2804–2814. doi: 10.1007/s11663-019-01670-5
  • Li Y, Gu D. Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit Manuf. 2014;1–4:99–109. doi: 10.1016/j.addma.2014.09.001
  • Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Eng. 2014;63:856–867.
  • Shi Q, Gu D, Xia M, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol. 2016;84:9–22. doi: 10.1016/j.optlastec.2016.04.009
  • Ciccone F, Bacciaglia A, Ceruti A. Optimization with artificial intelligence in additive manufacturing: A systematic review. J Braz Soc Mech Sci Eng. 2023;45(6):303. doi: 10.1007/s40430-023-04200-2
  • Sing SL, Kuo CN, Shih CT, et al. Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys Prototyp. 2021;16(3):372–386. doi: 10.1080/17452759.2021.1944229
  • Huang X, Ng WL, Yeong WY. Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches. J Intell Manuf. 2023. doi: 10.1007/s10845-023-02167-4
  • Wang C, Chandra S, Huang S, et al. Unraveling process-microstructure-property correlations in powder-bed fusion additive manufacturing through information-rich surface features with deep learning. J Mater Process Technol. 2023;311:117804. doi: 10.1016/j.jmatprotec.2022.117804
  • Ding L, Tan S, Chen W, et al. Development of a manufacturability predictor for periodic cellular structures in a selective laser melting process via experiment and ANN modelling. Virtual Phys Prototyp. 2022;17(4):948–965. doi: 10.1080/17452759.2022.2091461
  • Li B, Zhang W, Xuan F. Machine-learning prediction of selective laser melting additively manufactured part density by feature-dimension-ascended Bayesian network model for process optimisation. Int J Adv Manuf Technol. 2022;121(5–6):4023–4038. doi: 10.1007/s00170-022-09555-9
  • Goh GD, Huang X, Huang S, et al. Data imputation strategies for process optimization of laser powder bed fusion of Ti6Al4V using machine learning. Mater Sci Addit Manuf. 2023;2(1):50. doi: 10.36922/msam.50
  • Babu SS, Mourad AI, Harib KH, et al. Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2141653. doi: 10.1080/17452759.2022.2141653.
  • Loh L, Chua C, Yeong W, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transfer. 2015;80:288–300. doi: 10.1016/j.ijheatmasstransfer.2014.09.014
  • Jimenez Abarca M, Darabi R, de Sa JC, et al. Multi-scale modeling for prediction of residual stress and distortion in Ti–6Al–4V semi-circular thin-walled parts additively manufactured by laser powder bed fusion (LPBF). Thin-Walled Struct. 2023;182:110151. doi: 10.1016/j.tws.2022.110151
  • Emmelmann C, Sander P, Kranz J, et al. Laser additive manufacturing and bionics: Redefining lightweight design. Phys Procedia. 2011;12:364–368. doi: 10.1016/j.phpro.2011.03.046
  • Sproull RL. The conduction of heat in solids. Sci Am. 1962;207(6):92–106. doi: 10.1038/scientificamerican1262-92
  • Yin J, Zhu H, Ke L, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci. 2012;53(1):333–339. doi: 10.1016/j.commatsci.2011.09.012
  • Rombouts M, Froyen L, Gusarov AV, et al. Light extinction in metallic powder beds: Correlation with powder structure. J Appl Phys. 2005;98(1):13533. doi: 10.1063/1.1948509
  • Thummler F, Oberacker R. An introduction to powder metallurgy. London: The University Press; 1993. p. 59.