812
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrated free-standing WS2 3D-printed carbon supercapacitor with solid state electrolyte

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2326897 | Received 11 Sep 2023, Accepted 05 Jan 2024, Published online: 25 Mar 2024

References

  • Tan HW, Choong YYC, Kuo CN, et al. 3D printed electronics: processes, materials and future trends. Prog Mater Sci. 2022;127:1–28.
  • Jandyal A, Chaturvedi I, Wazir I, et al. 3D printing – a review of processes, materials and applications in industry 4.0. Sustainable Operat Comput. 2022;3:33–42.
  • Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286–1296.
  • Zhang S, Liu Y, Hao J, et al. 3D-printed wearable electrochemical energy devices. Adv Funct Mater. 2022;32:1–33.
  • Kwon S, Kim H, Yeo WH. Recent advances in wearable sensors and portable electronics for sleep monitoring. iScience. 2021;24(5):1–16.
  • Sumboja A, Liu J, Zheng WG, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev. 2018;47:5919–5945.
  • Kasprzak D, Mayorga-Martinez CC, Pumera M. Sustainable and flexible energy storage devices: a review. Energy Fuels. 2023;37(1):74–97.
  • Zhou R, Wang H, Chang J, et al. Ammonium intercalation induced expanded 1T-rich molybdenum diselenides for improved lithium ion storage. ACS Appl Mater Interfaces. 2021;13(15):17459–17466.
  • Zhai Z, Zhang L, Du T, et al. A review of carbon materials for supercapacitors. Mater Des. 2022;221:1–19.
  • Chatterjee DP, Nandi AK. A review on the recent advances in hybrid supercapacitors. J Mater Chem A. 2021;9:15880–15918.
  • Yao Z, Yu C, Dai H, et al. Hybrid fibers assembled from MoSe2/graphene heterostructures endow improved supercapacitive performance. Carbon N Y. 2022;187:165–172.
  • Zhu C, Liu T, Qian F, et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today. 2017;15:107–120.
  • Wei M, Zhang F, Wang W, et al. 3D direct writing fabrication of electrodes for electrochemical storage devices. J Power Sources. 2017;354:134–147.
  • Jha S, Velhal M, Stewart W, et al. Additively manufactured electrodes for supercapacitors: a review. Appl. Mater. Today. 2022;26:1–26.
  • Gulzar U, Glynn C, O’Dwyer C. Additive manufacturing for energy storage: methods, designs and material selection for customizable 3D printed batteries and supercapacitors. Curr Opin Electrochem. 2020;20:46–53.
  • Liu Y, Zheng S, Ma J, et al. Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. J Energy Chem. 2021;63:514–520.
  • Zong W, Ouyang Y, Miao YE, et al. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices. Chem Comm. 2022;58(13):2075–2095.
  • Huang Q, Liu X, Wang J. 3D printed pure carbon-based electrodes for zinc-ion hybrid supercapacitor. Carbon Trends. 2022;9:1–9.
  • Gao H, An J, Chua CK, et al. 3D printed optics and photonics: processes, materials and applications. Materials Today. 2023;69:107–132.
  • Browne MP, Redondo E, Pumera M. 3D printing for electrochemical energy applications. Chem Rev. 2020;120(5):2783–2810.
  • Muñoz J, Pumera M. Accounts in 3D-printed electrochemical sensors: towards monitoring of environmental pollutants. ChemElectroChem. 2020;7:3404–3413.
  • Redondo E, Muñoz J, Pumera M. Green activation using reducing agents of carbon-based 3D printed electrodes: turning good electrodes to great. Carbon N Y. 2021;175:413–419.
  • Foster CW, Down MP, Zhang Y, et al. 3D printed graphene based energy storage devices. Sci Rep. 2017;7:1–11.
  • Browne PM, Novotný F, Sofer Z, et al. 3D printed graphene electrodes’ electrochemical activation. ACS Appl Mater Interfaces. 2018;10(46):40294–40301.
  • Iffelsberger C, Ng S, Pumera M. Catalyst coating of 3D printed structures via electrochemical deposition: case of the transition metal chalcogenide MoSx for hydrogen evolution reaction. Appl Mater Today. 2020;20:1–7.
  • Manzanares L, Palenzuela C, Novotný F, et al. 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem. 2018;90(9):5753–5757.
  • Gusmão R, Browne MP, Sofer Z, et al. The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem Commun. 2019;102:83–88.
  • Novotný F, Urbanová V, Plutnar J, et al. Preserving fine structure details and dramatically enhancing electron transfer rates in graphene 3D-printed electrodes via thermal annealing: toward nitroaromatic explosives sensing. ACS Appl Mater Interfaces. 2019;11(38):35371–35375.
  • Ghosh K, Pumera M. Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application †. Nanoscale. 2021;13:5744–5756.
  • Ghosh K, Pumera M. MXene and MoS3−x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5(8):1–15.
  • Ng S, Zazpe R, Rodriguez-Pereira J, et al. Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. J Mater Chem A. 2021;9(18):11405–11414.
  • Gao Y, Ding J. 3D printed thick reduced graphene oxide: manganese oxide/carbon nanotube hybrid electrode with highly ordered microstructures for supercapacitors. Adv Mater Technol. 2023;8:1–11.
  • Mohan VV, Manuraj M, Anjana PM, et al. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2022;10(3):1–7.
  • Sengupta S, Kundu M. Self-Assembled 2D WS2 interconnected nanosheets: an anode material with outstanding lithium-storage performance. Energy Technol. 2022;10(6):1–9.
  • Dai H, Zhao Y, Zhang Z, et al. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability. J Electroanal Chem. 2022;921:1–7.
  • Liu QY, Sun GW, Pan JL, et al. Metal ion cutting-assisted synthesis of defect-rich MoS2 nanosheets for high-rate and ultrastable Li2S catalytic deposition. ACS Appl Mater Interfaces. 2022;14(33):37771–37781.
  • Mohan VV, Manuraj M, Anjana PM, et al. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2022;10(3):1–7.
  • Wu C, Zeng X, He P, et al. Flexible WS2@CNFs membrane electrode with outstanding lithium storage performance derived from capacitive behavior. Adv Mater Interfaces. 2018;5(3):1–8.
  • Venkata Guru Raghavendra K, Sreekanth TVM, Kim J, et al. Novel hydrothermal synthesis of jasmine petal-like nanoflower WS2/ZnCo2O4 as efficient electrode material for high-performance supercapacitors. Mater Lett. 2021;285:1–5.
  • Kim JY, Chae S, Jang W, et al. Antioxidant triggered metallic 1T’ phase transformations of chemically exfoliated tungsten disulfide (WS2) nanosheets. Small. 2022;18(12):1–9.
  • Lan C, Li C, Ho JC, et al. 2D WS2: from vapor phase synthesis to device applications. Adv Electron Mater. 2021;7:1–36.
  • Tan SM, Pumera M. Bottom-up electrosynthesis of highly active tungsten sulfide (WS3-x) films for hydrogen evolution. ACS Appl Mater Interfaces. 2016;8(6):3948–3957.
  • Wu Z-S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 2012;24:5130–5135.
  • Ghosh K, Ng S, Iffelsberger C, et al. Inherent impurities in graphene/polylactic acid filament strongly influence on the capacitive performance of 3D-printed electrode. Chem Eur J. 2020;26(67):15746–15753.
  • Komornicki S, Radecka M, Sobaś P. Structural properties of TiO2-WO3 thin films prepared by r.f. sputtering. J Mater Sci Mater Electron. 2004;15(8):527–531.
  • Liu L, Ye K, Lin C, et al. Grain-boundary-rich polycrystalline monolayer WS2 film for attomolar-level Hg2+ sensors. Nat. Commun. 2021;12(1):1–8.
  • Gao G, Lv M, Shao Y, et al. Crystal facet-dependent activity of h-WO3 for selective conversion of furfuryl alcohol to ethyl levulinate. Phys Chem Chem Phys 2020;22:26923–26934.
  • Lu Y, Huang B, Xu X, et al. Construction and characteristics of a novel green photocatalyst:iron (III) doped titania nanomesh. Ceram Int. 2021;47(16):23497–23506.
  • Shao Y, Jin X, Li C, et al. An effective non-equivalent ion exchange method for building an advanced Z-scheme WO3/Bi2WO6 photocatalyst. New J. Chem. 2021;45(46):21863–21868.
  • Pacholik G, Enzlberger L, Benzer A, et al. In situ XPS studies of MoS2-based CO2 hydrogenation catalysts. J. Phys. D: Appl. Phys. 2021;54(32):1–10.
  • Wang H, Wei L, Shen J. Metal-free catalyst for efficient PH-universal oxygen reduction electrocatalysis in microbial fuel cell. J Electroanal. Chem. 2022;911:1–8.
  • Swaminathan R, Pazhamalai P, Mohan V, et al. Topochemically prepared tungsten disulfide nanostructures as a novel pseudocapacitive electrode for high performance supercapacitor. J Colloid Interface Sci. 2023;652:845–855.
  • Gogotsi Y, Penner RM. Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like? ACS Nano. 2018;12(3):2081–2083.
  • Lindstro H, So S, Solbrand A, et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B. 1997;101, 39:7717–7722.
  • Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518–522.
  • Palacios-Corella M, Ghosh K, Redondo E, et al. Polyoxometalate-enhanced 3D-printed supercapacitors. ChemSusChem. 2022;15(23):1–8.
  • Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633–7644.
  • Mathis TS, Kurra N, Wang X, et al. Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater. 2019;9:1–13.
  • Mohan M, Shetti NP, Aminabhavi TM. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage. 2023;58:1–19.
  • Pan Z, Li X, Yang C, et al. One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor. J. Colloid Interface Sci. 2023;634:460–468.
  • Ghosh K, Ng S, Iffelsberger C, et al. Inherent impurities in graphene/polylactic acid filament strongly influence on the capacitive performance of 3D-printed electrode. Chem. Eur. J. 2020;26(67):15746–15753.
  • Santo J, Penumakala PK, Adusumalli RB. Mechanical and electrical properties of three-dimensional printed polylactic acid–graphene–carbon nanofiber composites. Polym. Compos. 2021;42(7):3231–3242.
  • Mastria R, Scarfiello R, Altamura D, et al. In-plane aligned colloidal 2D WS2 nanoflakes for solution-processable thin films with high planar conductivity. Sci Rep. 2019;9(1):1–13.
  • Zhang, S., Pan, N. Supercapacitors Performance Evaluation. Adv. Energy Mater. 2015;5:1–19.
  • Alkhalaf S, Ranaweera CK, Kahol PK, et al. Electrochemical energy storage performance of electrospun CoMn2O4 nanofibers. J. Alloys Compd. 2017;692:59–66.
  • Senthilkumar ST, Selvan RK, Lee YS, et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A Mater. 2013;1(4):1086–1095.