871
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of low-cycle fatigue properties of additive manufactured IN718 by crystal plasticity modelling incorporating effects from crystallographic orientations and defects

, , , , ORCID Icon, & show all
Article: e2328266 | Received 10 Jan 2024, Accepted 02 Mar 2024, Published online: 19 Mar 2024

References

  • Radhakrishnan J, Kumar P, Li S, et al. Unnotched fatigue of Inconel 718 produced by laser beam-powder bed fusion at 25 and 600°C. Acta Mater. 2022;225:117565. doi:10.1016/j.actamat.2021.117565
  • Thomas A, El-Wahabi M, Cabrera JM, et al. High temperature deformation of Inconel 718. J Mater Process Technol. 2006;177(1–3):469–472. doi:10.1016/j.jmatprotec.2006.04.072
  • Zhang YN, Cao X, Wanjara P, et al. Oxide films in laser additive manufactured Inconel 718. Acta Mater. 2013;61:6562–6576. doi:10.1016/j.actamat.2013.07.039
  • Cruzado A, LLorca J, Segurado J. Modeling cyclic deformation of Inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int J Solids Struct. 2017;122–123:148–161. doi:10.1016/j.ijsolstr.2017.06.014
  • Prithivirajan V, Sangid MD. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity. Mater Des. 2018;150:139–153. doi:10.1016/j.matdes.2018.04.022
  • Debroy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Li X, Zhang M, Fang X, et al. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual Phys Prototyp. 2023;18. doi:10.1080/17452759.2023.2170252
  • Zhang M, Wang B, Li X, et al. Grain refinement of NiTi alloys during ultrasound-assisted wire-arc directed energy deposition. Virtual Phys Prototyp. 2024;19. doi:10.1080/17452759.2023.2289465
  • Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci. 2020;107:100590. doi:10.1016/j.pmatsci.2019.100590
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117:100724. doi:10.1016/j.pmatsci.2020.100724
  • Collins PC, Brice DA, Samimi P, et al. Microstructural control of additively manufactured metallic materials. Annu Rev Mater Res. 2016;46:63–91. doi:10.1146/annurev-matsci-070115-031816
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–1928. doi:10.1007/s11665-014-0958-z
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61:315–360. doi:10.1080/09506608.2015.1116649
  • Popovich VA, Borisov EV, Sufiiarov VS, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des. 2017;131:12–22. doi:10.1016/j.matdes.2017.05.065
  • Seow CE, Coules HE, Wu G, et al. Wire + arc additively manufactured Inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Mater Des. 2019;183:108157. doi:10.1016/j.matdes.2019.108157
  • Xi N, Fang X, Duan Y, et al. Wire arc additive manufacturing of Inconel 718: constitutive modelling and its microstructure basis. J Manuf Process. 2022;75:1134–1143. doi:10.1016/j.jmapro.2022.01.067
  • Xi N, Tang K, Fang X, et al. Enhanced comprehensive properties of directed energy deposited Inconel 718 by a novel integrated deposition strategy. J Mater Sci Technol. 2023;141:42–55. doi:10.1016/j.jmst.2022.09.026
  • Xu X, Ding J, Ganguly S, et al. Investigation of process factors affecting mechanical properties of Inconel 718 superalloy in wire + arc additive manufacture process. J Mater Process Technol. 2019;265:201–209. doi:10.1016/j.jmatprotec.2018.10.023
  • Zhang ZH, Zhou YH, Zhou SY, et al. Mechanically blended Al: simple but effective approach to improving mechanical property and thermal stability of selective laser-melted Inconel 718. Metall Mater Trans A. 2019;50:3922–3936. doi:10.1007/s11661-019-05299-6
  • Kindermann RM, Roy MJ, Morana R, et al. Effects of microstructural heterogeneity and structural defects on the mechanical behaviour of wire + arc additively manufactured Inconel 718 components. Mater Sci Eng A. 2022;839:142826. doi:10.1016/j.msea.2022.142826
  • Kirka MM, Greeley DA, Hawkins C, et al. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting. Int J Fatigue. 2017;105:235–243. doi:10.1016/j.ijfatigue.2017.08.021
  • Ghorbanpour S, Sahu S, Deshmukh K, et al. Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing. Mater Charact. 2021;179:111350. doi:10.1016/j.matchar.2021.111350
  • Prost M, Köster A, Missoum-Benziane D, et al. Anisotropy in cyclic behavior and fatigue crack growth of IN718 processed by laser powder bed fusion. Additive Manuf. 2023;61:103301. doi:10.1016/j.addma.2022.103301
  • Kou S. Welding metallurgy. MRS Bull. 2003;28:674–675. doi:10.1557/mrs2003.197
  • Ni M, Chen C, Wang X, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A. 2017;701:344–351. doi:10.1016/j.msea.2017.06.098
  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578. doi:10.1016/j.pmatsci.2019.100578
  • Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process. 2018;35:127–139. doi:10.1016/j.jmapro.2018.08.001
  • Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019;164:413–427. doi:10.1016/j.actamat.2018.10.032
  • Wan H-Y, Zhou Z, Li C, et al. Enhancing fatigue strength of selective laser melting-fabricated Inconel 718 by tailoring heat treatment route. Adv Eng Mater. 2018;20. doi:10.1002/adem.201800307
  • Wang QG, Apelian D, Lados DA. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J Light Metals. 2001;1:73–84. doi:10.1016/S1471-5317(00)00008-0
  • Siddique S, Awd M, Tenkamp J, et al. High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys. J Mater Res. 2017;32:4296–4304. doi:10.1557/jmr.2017.314
  • Muhammad M, Frye P, Simsiriwong J, et al. An investigation into the effects of cyclic strain rate on the high cycle and very high cycle fatigue behaviors of wrought and additively manufactured Inconel 718. Int J Fatigue. 2021;144:106038. doi:10.1016/j.ijfatigue.2020.106038
  • Dodaran MS, Muhammad M, Shamsaei N, et al. Synergistic effect of microstructure and defects on the initiation of fatigue cracks in additively manufactured Inconel 718. Int J Fatigue. 2022;162:107002. doi:10.1016/j.ijfatigue.2022.107002
  • Asaro RJ. Crystal plasticity. J Appl Mech. 1983;50(4b):921–934. doi:10.1115/1.3167205
  • Bandyopadhyay R, Sangid MD. Crystal plasticity assessment of inclusion- and matrix-driven competing failure modes in a nickel-base superalloy. Acta Mater. 2019;177:20–34. doi:10.1016/j.actamat.2019.07.024
  • Dunne FPE, Wilkinson AJ, Allen R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int J Plast. 2007;23(2):273–295. doi:10.1016/j.ijplas.2006.07.001
  • Korsunsky A, Dini D, Dunne F, et al. Comparative assessment of dissipated energy and other fatigue criteria. Int J Fatigue. 2007;29(9–11):1990–1995. doi:10.1016/j.ijfatigue.2007.01.007
  • Sweeney CA, Vorster W, Leen SB, et al. The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J Mech Phys Solids. 2013;61(5):1224–1240. doi:10.1016/j.jmps.2013.01.001
  • Cao M, Liu Y, Dunne FPE. A crystal plasticity approach to understand fatigue response with respect to pores in additive manufactured aluminium alloys. Int J Fatigue. 2022;161:106917. doi:10.1016/j.ijfatigue.2022.106917
  • Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning. Int J Fatigue. 2022;157:106716. doi:10.1016/j.ijfatigue.2021.106716
  • Yang J, Kang G, Liu Y, et al. A novel method of multiaxial fatigue life prediction based on deep learning. Int J Fatigue. 2021;151:106356. doi:10.1016/j.ijfatigue.2021.106356
  • Peng X, Wu S, Qian W, et al. The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci. 2022;221:107185. doi:10.1016/j.ijmecsci.2022.107185
  • Liu P, Jiang H, Dong J, et al. Effect of micron-scale nonmetallic inclusions on fatigue crack nucleation in a nickel-based superalloy. Int J Solids Struct. 2023;279:112368. doi:10.1016/j.ijsolstr.2023.112368
  • Aerospace, S.a.E. Aerospace Material Specification: AMS 5383. SAE International; 2012.
  • Xi N, Ni Z, Fang X, et al. Role of δ-phase on mechanical behaviors of additive manufactured Inconel 718: Detailed microstructure analysis and crystal plasticity modelling. Int J Plast. 2023;168:103708. doi:10.1016/j.ijplas.2023.103708
  • Alonso U, Veiga F, Suárez A, et al. Characterization of Inconel 718® superalloy fabricated by wire arc additive manufacturing: effect on mechanical properties and machinability. J Mater Res Technol. 2021;14:2665–2676. doi:10.1016/j.jmrt.2021.07.132
  • Bhujangrao T, Veiga F, Suárez A, et al. High-temperature mechanical properties of IN718 alloy: comparison of additive manufactured and wrought samples. Crystals (Basel). 2020;10:689. doi:10.3390/cryst10080689
  • Wang K, Liu Y, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. J Alloys Compd. 2020;819:152936. doi:10.1016/j.jallcom.2019.152936
  • Xu X, Ganguly S, Ding J, et al. Enhancing mechanical properties of wire + arc additively manufactured Inconel 718 superalloy through in-process thermomechanical processing. Mater Des. 2018;160:1042–1051. doi:10.1016/j.matdes.2018.10.038
  • Kalentics N, Huang K, Ortega Varela de Seijas M, et al. Laser shock peening: a promising tool for tailoring metallic microstructures in selective laser melting. J Mater Process Technol. 2019;266:612–618. doi:10.1016/j.jmatprotec.2018.11.024
  • Li X, Zhang Y, Zhou S, et al. Very high cycle fatigue of a nickel-based superalloy at room and elevated temperatures: Interior failure behavior and life prediction. Int J Fatigue. 2021;151:106349. doi:10.1016/j.ijfatigue.2021.106349
  • Liu G, Winwood S, Rhodes K, et al. The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloy. Int J Plast. 2020;125:150–168. doi:10.1016/j.ijplas.2019.09.010
  • Li WB, Pang JC, Zhang H, et al. The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures. Mater Sci Eng A. 2022;836:142716. doi:10.1016/j.msea.2022.142716
  • Asaro RJ, Needleman A. Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985;33:923–953.
  • Bronkhorst CA, Mayeur JR, Livescu V, et al. Structural representation of additively manufactured 316L austenitic stainless steel. Int J Plast. 2019;118:70–86. doi:10.1016/j.ijplas.2019.01.012
  • Eghtesad A, Knezevic M. A full-field crystal plasticity model including the effects of precipitates: application to monotonic,: load reversal, and low-cycle fatigue behavior of Inconel 718. Mater Sci Eng A. 2021;803:140478. doi:10.1016/j.msea.2020.140478
  • Ghorbanpour S, Zecevic M, Kumar A, et al. A crystal plasticity model incorporating the effects of precipitates in superalloys: application to tensile, compressive, and cyclic deformation of Inconel 718. Int J Plast. 2017;99:162–185. doi:10.1016/j.ijplas.2017.09.006
  • Frederick CO, Armstrong PJ. A mathematical representation of the multiaxial Bauschinger effect. Mater High Temp. 2007;24:1–26. doi:10.3184/096034007(207589
  • White CS, Bronkhorst CA, Anand L. An improved isotropic—kinematic hardening model for moderate deformation metal plasticity. Mech Mater. 1990;10:127–147. doi:10.1016/0167-6636(90)90023-9
  • Gupta S, Bronkhorst CA. Crystal plasticity model for single crystal Ni-based superalloys: capturing orientation and temperature dependence of flow stress. Int J Plast. 2021;137:102896. doi:10.1016/j.ijplas.2020.102896
  • Anand L, Kothari M. A computational procedure for rate-independent crystal plasticity. J Mech Phys Solids. 1996;44:525–558. doi:10.1016/0022-5096(96)00001-4
  • Bertin N, Capolungo L, Beyerlein IJ. Hybrid dislocation dynamics based strain hardening constitutive model. Int J Plast. 2013;49:119–144. doi:10.1016/j.ijplas.2013.03.003
  • Lee S, Cho H, Bronkhorst CA, et al. Deformation, dislocation evolution and the non-Schmid effect in body-centered-cubic single- and polycrystal tantalum. Int J Plast. 2023;163:103529. doi:10.1016/j.ijplas.2023.103529
  • Wan VVC, Jiang J, MacLachlan DW, et al. Microstructure-sensitive fatigue crack nucleation in a polycrystalline Ni superalloy. Int J Fatigue. 2016;90:181–190. doi:10.1016/j.ijfatigue.2016.04.013
  • Wan VVC, MacLachlan DW, Dunne FPE. A stored energy criterion for fatigue crack nucleation in polycrystals. Int J Fatigue. 2014;68:90–102. doi:10.1016/j.ijfatigue.2014.06.001
  • Chen B, Jiang J, Dunne FPE. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? Int J Plast. 2018;101:213–229. doi:10.1016/j.ijplas.2017.11.005
  • Lu X, Dunne FPE, Xu Y. A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in Nickel-based superalloy. Int J Fatigue. 2020;139:105782. doi:10.1016/j.ijfatigue.2020.105782
  • Kamlah M, Haupt P. On the macroscopic description of stored energy and self heating during plastic deformation. Int J Plast. 1997;13:893–911. doi:10.1016/S0749-6419(97)00063-6
  • Rusinek A, Klepaczko JR. Experiments on heat generated during plastic deformation and stored energy for TRIP steels. Mater Des. 2009;30:35–48. doi:10.1016/j.matdes.2008.04.048
  • Zhang X, Zhao J, Kang G, et al. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: a nonlocal crystal plasticity study. Int J Plast. 2023;163:103553. doi:10.1016/j.ijplas.2023.103553
  • Lin B, Zhao LG, Tong J. A crystal plasticity study of cyclic constitutive behaviour, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy. Eng Fract Mech. 2011;78(10):2174–2192. doi:10.1016/j.engfracmech.2011.04.006
  • Hu Y, Niu Y, Zhang Q, et al. Synergistic effect of Laves phase evolution and porosity defects in nuclear-grade FeCrAl alloy laser welded joints: experiments and crystal plasticity modeling. Opt Laser Technol. 2023;157:108694. doi:10.1016/j.optlastec.2022.108694
  • Shen J, Fan H, Wang J, et al. Stored energy density research on the fatigue crack initiation at twin boundary and life prediction of Inconel718 superalloy. Int J Fatigue. 2023;171:107590. doi:10.1016/j.ijfatigue.2023.107590
  • Ye W, Akram J, Mushongera LT. Fatigue behavior of additively manufactured IN718 with columnar grains. Adv Eng Mater. 2021;23; doi:10.1002/adem.202001031
  • Balasubramanian S-S, Philpott C, Hyder J, et al. Testing techniques and fatigue of additively manufactured Inconel 718 – a review. Int J Eng Mater Manuf. 2020;5:156–194. doi:10.26776/ijemm.05.04.2020.05