565
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the sensitivity of 3D printed sensors via ironing and void reduction

, , , , &
Article: e2331153 | Received 19 Dec 2023, Accepted 10 Mar 2024, Published online: 26 Mar 2024

References

  • Lussenburg K, Sakes A, Breedveld P. Design of non-assembly mechanisms: A state-of-the-art review. Addit Manuf. 2021;39(May 2020):101846. doi:10.1016/j.addma.2021.101846
  • Cuellar JS, Smit G, Plettenburg D, et al. Additive manufacturing of non-assembly mechanisms. Addit Manuf. 2018;21(January):150–158. doi:10.1016/j.addma.2018.02.004
  • Yin J, Lu C, Fu J, et al. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater Des. 2018;150:104–112. doi:10.1016/j.matdes.2018.04.029
  • Tamburrino F, Graziosi S, Bordegoni M. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual Phys Prototyp. 2019;14(4):316–322. doi:10.1080/17452759.2019.1607758
  • Lopes LR, Silva AF, Carneiro OS. Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance. Addit Manuf. 2018;23(March):45–52. doi:10.1016/j.addma.2018.06.027
  • Khudiakova A, Arbeiter F, Spoerk M, et al. Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabrication. Addit Manuf. 2019;28(March):184–193. doi: 10.1016/j.addma.2019.05.006.
  • Altuntas U, Coker D, Yavas D. Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication. Addit Manuf. 2023;61(November 2022):103359. doi:10.1016/j.addma.2022.103359
  • Stano G, Ovy SMAI, Percoco G, et al. Additive manufacturing for bioinspired structures: experimental study to improve the multimaterial adhesion between soft and stiff materials. 3D Print Addit Manuf 2023;1080–1089. doi:10.1089/3dp.2022.0186
  • Goh GL, Zhang H, Chong TH, et al. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater. 2021;7(10):1–28. doi:10.1002/aelm.202100445
  • Emon MOF, Alkadi F, Philip DG, et al. Multi-material 3D printing of a soft pressure sensor. Addit Manuf. 2019;28(May):629–638. doi:10.1016/j.addma.2019.06.001
  • Košir T, Slavič J. Manufacturing of single-process 3D-printed piezoelectric sensors with electromagnetic protection using thermoplastic material extrusion. Addit Manuf. 2023;73(June):103699. doi:10.1016/j.addma.2023.103699
  • Košir T, Slavič J. Single-process fused filament fabrication 3D-printed high-sensitivity dynamic piezoelectric sensor. Addit Manuf. 2022;49(June 2021):102482. doi:10.1016/j.addma.2021.102482
  • Loh LYW, Gupta U, Wang Y, et al. 3D printed metamaterial capacitive sensing array for universal jamming gripper and human joint wearables. Adv Eng Mater. 2021;23(5):1–9. doi:10.1002/adem.202001082
  • Blaž N, Kisić M, Živanov L, et al. Capacitive sensor with stretchable membrane fabricated by 3D printing for displacement application. EUROCON 2019 - 18th Int. Conf. Smart Technol., p. 6–10, 2019. doi:10.1109/EUROCON.2019.8861960
  • Oprel J, Wolterink G, Schilder J, et al. Novel 3D printed capacitive shear stress sensor. Addit Manuf. 2023;73(June):103674. doi:10.1016/j.addma.2023.103674
  • Dijkshoorn A, Werkman P, Welleweerd M, et al. Embedded sensing: integrating sensors in 3-D printed structures. J Sensors Sens Syst. 2018;7(1):169–181. doi:10.5194/jsss-7-169-2018
  • Schouten M, Wolterink G, Dijkshoorn A, et al. A review of extrusion-based 3D printing for the fabrication of electro- and biomechanical sensors. IEEE Sens J. 2021;21(11):12900–12912. doi:10.1109/JSEN.2020.3042436
  • Banks JD, Emami A. Carbon-based piezoresistive polymer nanocomposites by extrusion additive manufacturing: process, material design, and current progress. 3D Print. Addit. Manuf., Dec. 2022. doi:10.1089/3dp.2022.0153
  • Tan JC, Low HY. Embedded electrical tracks in 3D printed objects by fused filament fabrication of highly conductive composites. Addit Manuf. 2018;23(April):294–302. doi:10.1016/j.addma.2018.06.009
  • Lazarus N, Tyler JB, Cardenas JA, et al. Direct electroless plating of conductive thermoplastics for selective metallization of 3D printed parts. Addit Manuf. 2022;55(March):102793. doi:10.1016/j.addma.2022.102793
  • Tan JC, Low HY. Multi-materials fused filament printing with embedded highly conductive suspended structures for compressive sensing. Addit Manuf. 2020;36(May):101551. doi:10.1016/j.addma.2020.101551
  • Urra Sanchez O, Besharatloo H, Yus J, et al. Material thermal extrusion of conductive 3D electrodes using highly loaded graphene and graphite colloidal feedstock. Addit Manuf. 2023;72(June):103643. doi:10.1016/j.addma.2023.103643
  • Li T, Saadatnia Z, Chen T, et al. Facile material extrusion of 3D wearable conductive-polymer micro-super-capacitors. Addit Manuf. 2023;74(July):103714. doi:10.1016/j.addma.2023.103714
  • Potnuru A, Tadesse Y. Investigation of polylactide and carbon nanocomposite filament for 3D printing. Prog Addit Manuf. 2019;4(1):23–41. doi:10.1007/s40964-018-0057-z
  • Podsiadły B, Skalski A, Wałpuski B, et al. Heterophase materials for fused filament fabrication of structural electronics. J Mater Sci Mater Electron. 2019;30(2):1236–1245. doi:10.1007/s10854-018-0391-4
  • Wang Z, Wu Y, Zhu B, et al. A magnetic soft robot with multimodal sensing capability by multimaterial direct ink writing. Addit Manuf. 2023;61(November 2022):103320. doi:10.1016/j.addma.2022.103320
  • Goh GL, Yeong WY, Altherr J, et al. 3D printing of soft sensors for soft gripper applications. Mater Today Proc. 2022;70:224–229. doi:10.1016/j.matpr.2022.09.025
  • Stano G, Ovy SMAI, Edwards JR, et al. One-shot additive manufacturing of robotic finger with embedded sensing and actuation. Int J Adv Manuf Technol. 2023;124(1–2):467–485. doi:10.1007/s00170-022-10556-x
  • Singh D, Tawk C, Mutlu R, et al. A 3D printed soft force sensor for soft haptics. 2020 3rd IEEE Int. Conf. Soft Robot. RoboSoft 2020, p. 458–463, 2020. doi:10.1109/RoboSoft48309.2020.9115991
  • Singh Matharu P, Wang Z, Costello JH, et al. Sojel –A 3D printed jellyfish-like robot using soft materials for underwater applications. Ocean Eng. 2023;279(April):114427. doi:10.1016/j.oceaneng.2023.114427
  • Maurizi M, Slavic J, Cianetti F, et al. Dynamic measurements using FDM 3D-printed embedded strain sensors. Sensors (Switzerland). 2019;19(12):1–15. doi:10.3390/s19122661
  • Arh M, Slavič J, Boltežar M. Experimental identification of the dynamic piezoresistivity of fused-filament-fabricated structures. Addit Manuf. 2020;36(April):101493. doi:10.1016/j.addma.2020.101493
  • Hohimer CJ, Petrossian G, Ameli A, et al. 3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators. Addit Manuf. 2020;34(April):101281. doi:10.1016/j.addma.2020.101281
  • Lalegani Dezaki M, Sales R, Zolfagharian A, et al. Soft pneumatic actuators with integrated resistive sensors enabled by multi-material 3D printing. Int J Adv Manuf Technol. 2023;128(9–10):4207–4221. doi:10.1007/s00170-023-12181-8
  • Georgopoulou A, Egloff L, Vanderborght B, et al. A sensorized soft pneumatic actuator fabricated with extrusion-based additive manufacturing. Actuators. 2021;10(5):102. doi:10.3390/act10050102
  • Mousavi S, Howard D, Zhang F, et al. Direct 3D printing of highly anisotropic,: flexible, constriction-resistive sensors for multidirectional proprioception in soft robots. ACS Appl Mater Interfaces. 2020;12(13):15631–15643. doi:10.1021/acsami.9b21816
  • Leigh SJ, Bradley RJ, Purssell CP, et al. A simple, Low-cost conductive composite material for 3D printing of electronic sensors. PLoS One. 2012;7(11):1–6. doi:10.1371/journal.pone.0049365
  • Yang Y, Chen Y, Li Y, et al. Novel variable-stiffness robotic fingers with built-In position feedback. Soft Robot. 2017;4(4):338–352. doi:10.1089/soro.2016.0060
  • Ji Q, Jansson J, Sjöberg M, et al. Design and calibration of 3D printed soft deformation sensors for soft actuator control. Mechatronics (Oxf). 2023;92(February):102980. doi:10.1016/j.mechatronics.2023.102980
  • Grønborg F, Zsurzsan TG, Daugaard AE, et al. Conductive compliant mechanisms: geometric tuning of 3D printed flexural sensors. Addit Manuf Lett. 2022;3(September):100088. doi:10.1016/j.addlet.2022.100088
  • Li B, Zhang S, Zhang L, et al. Strain sensing behavior of FDM 3D printed carbon black filled TPU with periodic configurations and flexible substrates. J Manuf Process. 2022;74(November 2021):283–295. doi:10.1016/j.jmapro.2021.12.020
  • Yu R, Xia T, Wu B, et al. Highly sensitive flexible piezoresistive sensor with 3D conductive network. ACS Applied Materials and Interfaces. 2020;12(31):35291–35299. doi:10.1021/acsami.0c09552
  • Kwon SN, Kim SW, Kim IG, et al. Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv Mater Technol. 2019;4(2):1–9. doi:10.1002/admt.201800500
  • Dembek K, Podsiadły B, Słoma M. Influence of process parameters on the resistivity of 3D printed electrically conductive structures. Micromachines (Basel). 2022;13(8). doi:10.3390/mi13081203
  • Stano G, Di Nisio A, Lanzolla AM, et al. Fused filament fabrication of commercial conductive filaments : experimental study on the process parameters aimed at the minimization, repeatability and thermal characterization of electrical resistance. Int J Adv Manuf Technol. 2020;111:2971–2986.
  • Palmić TB, Slavič J, Boltežar M. Process parameters for FFF 3D-printed conductors for applications in sensors. Sensors (Switzerland. 2020;20(16):1–21. doi:10.3390/s20164542
  • Goh G, Goh G, Nguyen V, et al. A 3D printing-enabled artificially innervated smart soft gripper with variable joint stiffness. Adv Mater Technol. 2023;2301426:1–15. doi:10.1002/admt.202301426
  • Nassar H, Ntagios M, Navaraj WT, et al. Multi-material 3D printed bendable smart sensing structures. p. 12–15, 2018. doi:10.1109/ICSENS.2018.8589625
  • Zolfagharian A, Mahmud MAP, Gharaie S, et al. 3D/4D-printed bending-type soft pneumatic actuators: fabrication,: modelling, and control. Virtual Phys Prototyp. 2020;15(4):373–402. doi:10.1080/17452759.2020.1795209
  • Nassar H, Ntagios M, Navaraj WT, et al. Multi-material 3D printed bendable smart sensing structures. In: 2018 IEEE sensors. New Delhi; 2018. p. 1–4. doi:10.1109/ICSENS.2018.8589625
  • Teng K, Kot P, Muradov M, et al. Embedded smart antenna for non-destructive testing and evaluation (NDT&E) of moisture content and deterioration in concrete. Sensors (Switzerland). 2019;19(3). doi:10.3390/s19030547
  • Ali MA, Hu C, Yttri EA, et al. Recent advances in 3D printing of biomedical sensing devices. Adv Funct Mater. 2022;32(9):2107671. doi:10.1002/adfm.202107671
  • Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell Syst. 2021;3(6):2000223. doi:10.1002/aisy.202000223
  • Mashayekhi F, Bardon J, Koutsawa Y, et al. Methods for embedding fiber Bragg grating sensors during material extrusion: relationship between the interfacial bonding and strain transfer. Addit Manuf. 2023;68(December 2022):103497. doi:10.1016/j.addma.2023.103497
  • Palmieri M, Slavič J, Cianetti F. Single-process 3D-printed structures with vibration durability self-awareness. Addit Manuf. 2021;47(May):102303. doi:10.1016/j.addma.2021.102303
  • Billah KMM, Coronel JL, Chavez L, et al. Additive manufacturing of multimaterial and multifunctional -structures via ultrasonic embedding of continuous carbon fiber. Compos Part C Open Access. 2021;5(April):100149. doi:10.1016/j.jcomc.2021.100149
  • MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science (80-). 2016;353(6307). doi:10.1126/science.aaf2093
  • MacDonald E, et al. 3D printing for the rapid prototyping of structural electronics. IEEE Access. 2014;2:234–242. doi:10.1109/ACCESS.2014.2311810
  • Coogan TJ, Kazmer DO. Healing simulation for bond strength prediction of FDM. Rapid Prototyp J. 2017;23(3):551–561. doi:10.1108/RPJ-03-2016-0051
  • Coogan TJ, Kazmer DO. Prediction of interlayer strength in material extrusion additive manufacturing. Addit Manuf. 2020;35(June):101368. doi:10.1016/j.addma.2020.101368
  • Sayah N, Smith DE. Effect of process parameters on void distribution, volume fraction, and sphericity within the bead microstructure of large-area additive manufacturing polymer composites. Polymers (Basel). 2022;14(23)., doi:10.3390/polym14235107
  • Andreu A, Kim S, Dittus J, et al. Hybrid material extrusion 3D printing to strengthen interlayer adhesion through hot rolling. Addit Manuf. 2022;55(March):1–9. doi:10.1016/j.addma.2022.102773
  • Qasaimeh M, Ravoori D, Jain A, et al. Modeling the effect of In situ nozzle-integrated compression rolling on the void reduction and filaments-filament adhesion in fused filament fabrication (FFF). Multiscale Sci Eng. 2022;4(1–2):37–54. doi:10.1007/s42493-022-00073-0
  • Christ JF, Aliheidari N, Pötschke P, et al. Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers (Basel). 2018;11(1). doi:10.3390/polym11010011
  • Xiang D, Zhang X, Li Y, et al. Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Compos Part B Eng. 2019;176(May):107250. doi:10.1016/j.compositesb.2019.107250
  • Christ JF, Aliheidari N, Ameli A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des. 2017;131:394–401. doi:10.1016/j.matdes.2017.06.011
  • Diani J, Fayolle B, Gilormini P. A review on the Mullins effect. Eur Polym J. 2009;45(3):601–612. doi:10.1016/j.eurpolymj.2008.11.017
  • Lanzolla AML, Attivissimo F, Percoco G, et al. Additive manufacturing for sensors: piezoresistive strain gauge with temperature compensation. Appl Sci. 2022;12(17). doi:10.3390/app12178607
  • Stano G, Di Nisio A, Lanzolla AM, et al. Fused filament fabrication of commercial conductive filaments: experimental study on the process parameters aimed at the minimization,: repeatability and thermal characterization of electrical resistance. Int J Adv Manuf Technol. 2020;111(9): 2971–2986. doi:10.1007/s00170-020-06318-2
  • Daniel F, Patoary NH, Moore AL, et al. Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling. Int J Adv Manuf Technol. Nov. 2018;99(5–8):1215–1224. doi:10.1007/s00170-018-2490-z
  • Mohiuddin M, Hoa SV. Temperature dependent electrical conductivity of CNT-PEEK composites. Compos Sci Technol. Dec. 2011;72(1):21–27. doi:10.1016/j.compscitech.2011.08.018
  • Gao H, An J, Chua CK, et al. 3D printed optics and photonics: processes,: materials and applications. Mater Today. Oct 2023;69:107–132. doi:10.1016/j.mattod.2023.06.019
  • Chow L, Yick K, Wong K, et al. 3D printing auxetic architectures for hypertrophic scar therapy. Macromol Mater Eng. 2022;307(5):2100866. doi:10.1002/mame.202100866
  • Zhang J, Lu G, You Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos Part B Eng. 2020;201(April):108340. doi:10.1016/j.compositesb.2020.108340
  • Johnston R, Kazancı Z. Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression. Addit Manuf. 2021;38(November 2020):101783. doi:10.1016/j.addma.2020.101783
  • Günaydın K, Rea C, Kazancı Z. Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Addit Manuf. 2022;59(PA):103076. doi:10.1016/j.addma.2022.103076