448
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of creep and recovery protocol to assess the printability of fibre-reinforced 3D printed white Portland cement composites

, , , , , & show all
Article: e2331201 | Received 05 Oct 2023, Accepted 06 Mar 2024, Published online: 22 Mar 2024

References

  • Ding T, Xiao J, Mechtcherine V. Microstructure and mechanical properties of interlayer regions in extrusion-based 3D printed concrete: a critical review. Cem Concr Compos. 2023;141:105154. doi:10.1016/j.cemconcomp.2023.105154
  • Tay Y, Lim S, Phua S, et al. Exploring carbon sequestration potential through 3D concrete printing. Virtual Phys Prototy. 2023;18:e2277347. doi:10.1080/17452759.2023.2277347
  • Chen M, Li L, Zheng Y, et al. Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials. Constr Build Mater. 2018;189:601–611. doi:10.1016/j.conbuildmat.2018.09.037
  • Salet TA, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototy. 2018;13(3):222–236. doi:10.1080/17452759.2018.1476064
  • Xiao J, Ji G, Zhang Y, et al. Large-scale 3D printing concrete technology: current status and future opportunities. Cem Concr Compos. 2021;122:104115. doi:10.1016/j.cemconcomp.2021.104115
  • Chen Y, Zhang Y, Pang B, et al. Extrusion-based 3D printing concrete with coarse aggregate: printability and direction-dependent mechanical performance. Constr Build Mater. 2021;296:123624. doi:10.1016/j.conbuildmat.2021.123624
  • Jiang Q, Liu Q, Wu S, et al. Modification effect of nanosilica and polypropylene fiber for extrusion-based 3D printing concrete: printability and mechanical anisotropy. Addit Manuf. 2022;56:102944.
  • Liu Y, Wang L, Yuan Q, et al. Effect of coarse aggregate on printability and mechanical properties of 3D printed concrete. Constr Build Mater. 2023;405:133338. doi:10.1016/j.conbuildmat.2023.133338
  • Ibrahim KA, van Zijl GP, Babafemi AJ. Influence of limestone calcined clay cement on properties of 3D printed concrete for sustainable construction. J Build Eng. 2023;69:106186. doi:10.1016/j.jobe.2023.106186
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototy. 2019;14(1):104–113. doi:10.1080/17452759.2018.1500420
  • Wang C, Chen B, Vo TL, et al. Mechanical anisotropy, rheology and carbon footprint of 3D printable concrete: a review. J Build Eng. 2023: 107309. doi:10.1016/j.jobe.2023.107309
  • Arunothayan AR, Nematollahi B, Khayat KH, et al. Rheological characterization of ultra-high performance concrete for 3D printing. Cem Concr Compos. 2023;136:104854. doi:10.1016/j.cemconcomp.2022.104854
  • Xu Z, Zhang D, Li H, et al. Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material. Constr Build Mater. 2022;339:127685. doi:10.1016/j.conbuildmat.2022.127685
  • Zhao Z, Chen M, Jin Y, et al. Rheology control towards 3D printed magnesium potassium phosphate cement composites. Compos Part B-Eng. 2022;239:109963. doi:10.1016/j.compositesb.2022.109963
  • Souza MT, Ferreira IM, de Moraes EG, et al. Role of chemical admixtures on 3D printed Portland cement: assessing rheology and buildability. Constr Build Mater. 2022;314:125666. doi:10.1016/j.conbuildmat.2021.125666
  • Zhang Y, Jiang Z, Zhu Y, et al. Effects of redispersible polymer powders on the structural build-up of 3D printing cement paste with and without hydroxypropyl methylcellulose. Constr Build Mater. 2021;267:120551. doi:10.1016/j.conbuildmat.2020.120551
  • Kolawole JT, Combrinck R, Boshoff WP. Rheo-viscoelastic behaviour of fresh cement-based materials: cement paste, mortar and concrete. Constr Build Mater. 2020;248:118667. doi:10.1016/j.conbuildmat.2020.118667
  • Zhao Z, Chen M, Zhong X, et al. Effects of bentonite, diatomite and metakaolin on the rheological behavior of 3D printed magnesium potassium phosphate cement composites. Addit Manuf. 2021;46:102184.
  • Chen M, Liu B, Li L, et al. Rheological parameters,: thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Compos Part B-Eng. 2020;186:107821. doi:10.1016/j.compositesb.2020.107821
  • Ju Y, Wang L, Xie H, et al. Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques. Constr Build Mater. 2017;143:121–137. doi:10.1016/j.conbuildmat.2017.03.102
  • Sacks R, Barak R. Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice. Automat Constr. 2008;17(4):439–449. doi:10.1016/j.autcon.2007.08.003
  • Panda B, Paul SC, Tan MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–149. doi:10.1016/j.matlet.2017.07.123
  • Yang Y, Wu C, Liu Z, et al. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cem Concr Compos. 2022;125:104310. doi:10.1016/j.cemconcomp.2021.104310
  • Liu C, Xiong Y, Chen Y, et al. Effect of sulphoaluminate cement on fresh and hardened properties of 3D printing foamed concrete. Compos Part B-Eng. 2022;232:109619. doi:10.1016/j.compositesb.2022.109619
  • Zhang Y, Zhu Y, Ren Q, et al. Comparison of printability and mechanical properties of rigid and flexible fiber-reinforced 3D printed cement-based materials. Constr Build Mater. 2023;400:132750. doi:10.1016/j.conbuildmat.2023.132750
  • Ma G, Li Z, Wang L, et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater. 2019;202:770–783. doi:10.1016/j.conbuildmat.2019.01.008
  • Shakor P, Nejadi S, Paul G, et al. Effects of different orientation angle, size, surface roughness, and heat curing on mechanical behavior of 3D printed cement mortar with/without glass fiber in powder-based 3DP. 3D Print Addit Manuf. 2023;10(2):330–355. doi:10.1089/3dp.2021.0067
  • Rajeev P, Ramesh A, Navaratnam S, et al. Using fibre recovered from face mask waste to improve printability in 3D concrete printing. Cem Concr Compos. 2023;139:105047. doi:10.1016/j.cemconcomp.2023.105047
  • Giwa I, Game D, Ahmed H, et al. Performance and macrostructural characterization of 3D printed steel fiber reinforced cementitious materials. Constr Build Mater. 2023;369:130593. doi:10.1016/j.conbuildmat.2023.130593
  • Teixeira RS, Santos SF, Christoforo AL, et al. Extrudability of cement-based composites reinforced with curauá (Ananas erectifolius) or polypropylene fibers. Constr Build Mater. 2019;205:97–110. doi:10.1016/j.conbuildmat.2019.02.010
  • Quah T, Vo T, Tay Y, et al. Real time assessment of smart concrete inspection with piezoelectric sensors. Electronics. 2023;12:3762. doi:10.3390/electronics12183762
  • Xu J, Chen M, Zhao Z, et al. Printability and efflorescence control of admixtures modified 3D printed white Portland cement-based materials based on the response surface methodology. J Build Eng. 2021;38:102208. doi:10.1016/j.jobe.2021.102208
  • Jin Y, Zhou X, Chen M, et al. High toughness 3D printed white Portland cement-based materials with glass fiber textile. Mater Lett. 2022;309:131381. doi:10.1016/j.matlet.2021.131381
  • Jin Y, Xu J, Li Y, et al. Rheological properties, shape stability and compressive strength of 3D printed colored cement composites modified by needle-like pigment. Addit Manuf. 2022;57:102965.
  • Qian Y, Kawashima S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cem Concr Res. 2016;90:73–79. doi:10.1016/j.cemconres.2016.09.005
  • Hu D, Guo Z, Jun T, et al. A novel hydrophilic PVA fiber reinforced thermoplastic polyurethane materials for water-lubricated stern bearing. Fiber Polym. 2021;22:171–183. doi:10.1007/s12221-021-0013-2
  • Wang J, Dai Q, Si R, et al. Investigation of properties and performances of polyvinyl alcohol (PVA) fiber-reinforced rubber concrete. Constr Build Mater. 2018;193:631–642. doi:10.1016/j.conbuildmat.2018.11.002
  • Kuder KG, Ozyurt N, Mu EB, et al. Rheology of fiber-reinforced cementitious materials. Cem Concr Res. 2007;37:191–199. doi:10.1016/j.cemconres.2006.10.015
  • Cao M, Wang C, Chen P, et al. Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials. Constr Build Mater. 2018;168:482–489. doi:10.1016/j.conbuildmat.2018.02.173
  • Chen M, Yang L, Zheng Y, et al. Rheological behaviors and structure build-up of 3D printed polypropylene and polyvinyl alcohol fiber-reinforced calcium sulphoaluminate cement composites. J Mater Res Technol. 2021;10:1402–1414. doi:10.1016/j.jmrt.2020.12.115
  • Han F, Pu S, Zhou Y, et al. Effect of ultrafine mineral admixtures on the rheological properties of fresh cement paste: a review. J Build Eng. 2022;51:104313. doi:10.1016/j.jobe.2022.104313
  • Bessaies-Bey H, Khayat KH, Palacios M, et al. Viscosity modifying agents: key components of advanced cement-based materials with adapted rheology. Cem Concr Res. 2022;152:106646. doi:10.1016/j.cemconres.2021.106646
  • Das S, Sobuz MHR, Tam VW, et al. Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Constr Build Mater. 2020;262:120561. doi:10.1016/j.conbuildmat.2020.120561
  • Zhu C, Zhang J, Peng J, et al. Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Constr Build Mater. 2018;163:695–705. doi:10.1016/j.conbuildmat.2017.12.168
  • Cao M, Li L, Shen S. Influence of reinforcing index on rheology of fiber-reinforced mortar. ACI Mater J. 2019;116:95–105.
  • Yaghoobi A, Chorzepa MG. Meshless modeling framework for fiber reinforced concrete structures. Comput Struct. 2015;161:43–54. doi:10.1016/j.compstruc.2015.08.015
  • Hao H, Song J, Chen M, et al. Rheological and mechanical properties of oil-well cement reinforced by hybrid inorganic fibers. Constr Build Mater. 2023;377:131002. doi:10.1016/j.conbuildmat.2023.131002
  • Kaya Y, Biricik Ö, Bayqra SH, et al. Rheological properties and thixotropic behavior of cementitious systems containing different fiber types. Arab J Sci Eng. 2023: 1–21.
  • Harbouz I, Roziere E, Yahia A, et al. Printability assessment of cement-based materials based on rheology, hydration kinetics, and viscoelastic properties. Constr Build Mater. 2022;325:126810. doi:10.1016/j.conbuildmat.2022.126810
  • Chen M, Li H, Yang L, et al. Rheology and shape stability control of 3D printed calcium sulphoaluminate cement composites containing paper milling sludge. Addit Manuf. 2022;54:102781.
  • Dunant CF, Granja J, Muller A, et al. Microstructural simulation and measurement of elastic modulus evolution of hydrating cement pastes. Cem Concr Res. 2020;130:106007. doi:10.1016/j.cemconres.2020.106007
  • Keshtkar M, Heuzey MC, Carreau PJ. Rheological behavior of fiber-filled model suspensions: effect of fiber flexibility. J Rheol. 2009;53:631–650. doi:10.1122/1.3103546
  • Song J, Xu M, Tan C, et al. Study on an epoxy resin system used to improve the elasticity of oil-well cement-based composites. Materials. 2022;15:5258. doi:10.3390/ma15155258
  • Liu B, Liu X, Li G, et al. Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods. Case Stud Constr Mat. 2022;17:e01519.
  • Kang ST, Kim JK. Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high performance cementitious composites (UHPCC). Cem Concr Compos. 2012;34:208–217. doi:10.1016/j.cemconcomp.2011.09.015
  • Özkan Ş, Demir F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites. Constr Build Mater. 2020;263:120564. doi:10.1016/j.conbuildmat.2020.120564
  • Ding C, Guo L, Chen B, et al. Micromechanics theory guidelines and method exploration for surface treatment of PVA fibers used in high-ductility cementitious composites. Constr Build Mater. 2019;196:154–165. doi:10.1016/j.conbuildmat.2018.11.118