449
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping 3D printed part density and filament flow characteristics in the material extrusion (MEX) process for filled and unfilled polymers

ORCID Icon, , &
Article: e2331206 | Received 12 Nov 2023, Accepted 11 Mar 2024, Published online: 08 Apr 2024

References

  • Abel J, Scheithauer U, Janics T, et al. Fused filament fabrication (FFF) of metal-ceramic components. J Vis Exp. 2019;2019:e57693. doi:10.3791/57693
  • Hong S, Sanchez C, Du H, et al. Fabrication of 3D printed metal structures by use of high-viscosity Cu paste and a screw extruder. J Electron Mater. 2015;44:836–841. doi:10.1007/s11664-014-3601-8
  • Ren L, Zhou X, Song Z, et al. Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials. 2017;10:305. doi:10.3390/ma10030305
  • Gackowski BM, Goh GD, Sharma M, et al. Additive manufacturing of nylon composites with embedded multi-material piezoresistive strain sensors for structural health monitoring. Compos Part B Eng. 2023;261:110796. doi:10.1016/j.compositesb.2023.110796
  • Blok LG, Longana ML, Yu H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf. 2018;22:176–186. doi:10.1016/j.addma.2018.04.039
  • Chen J, Smith DE. Filament rheological characterization for fused filament fabrication additive manufacturing: a low-cost approach. Addit Manuf. 2021;47:102208. doi:10.1016/j.addma.2021.102208
  • Gonzalez-Gutierrez J, Duretek I, Kukla C, et al. Models to predict the viscosity of metal injection molding feedstock materials as function of their formulation. Metals. 2016;6:129. doi:10.3390/met6060129
  • Luo C, Wang X, Migler KB, et al. Effects of feed rates on temperature profiles and feed forces in material extrusion additive manufacturing. Addit Manuf. 2020;35:101361. doi:10.1016/j.addma.2020.101361
  • Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J. 2014;20:192–204. doi:10.1108/RPJ-01-2013-0012
  • Turner BN, Gold SA. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J. 2015;21:250–261. doi:10.1108/RPJ-02-2013-0017
  • Venkataraman N, Rangarajan S, Matthewson MJ, et al. Feedstock material property – process relationships in fused deposition of ceramics (FDC). Rapid Prototyp J. 2000;6:244–252. doi:10.1108/13552540010373344
  • Bellini A, Güçeri S, Bertoldi M. Liquefier dynamics in fused deposition. J Manuf Sci Eng Trans ASME. 2004;126:237–246. doi:10.1115/1.1688377
  • Ramanath HS, Chua CK, Leong KF, et al. Melt flow behaviour of poly-ϵ-caprolactone in fused deposition modelling. J Mater Sci Mater Med. 2008;19:2541–2550. doi:10.1007/s10856-007-3203-6
  • Gilmer EL, Miller D, Chatham CA, et al. Model analysis of feedstock behavior in fused filament fabrication: enabling rapid materials screening. Polymer. 2018;152:51–61. doi:10.1016/j.polymer.2017.11.068
  • Duddleston LJL, Woznick K, Koch C, et al. Extrudate mass flow rate analysis in fused filament fabrication (FFF): a cursory investigation of the effects of printer parameters. Proceedings of Annual Technical Conference – ANTEC, 2017-May; Anaheim, California, USA; 2017. p. 43–48.
  • Phan DD, Swain ZR, Mackay ME. Rheological and heat transfer effects in fused filament fabrication. J Rheol. 2018;62:1097–1107. doi:10.1122/1.5022982
  • Osswald TA, Puentes J, Kattinger J. Fused filament fabrication melting model. Addit Manuf. 2018;22:51–59. doi:10.1016/j.addma.2018.04.030
  • Coogan TJ, Kazmer DO. In-line rheological monitoring of fused deposition modeling. J Rheol. 2019;63:141–155. doi:10.1122/1.5054648
  • Anderegg DA, Bryant HA, Ruffin DC, et al. In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Addit Manuf. 2019;26:76–83. doi:10.1016/j.addma.2019.01.002
  • Singh P, Balla VK, Tofangchi A, et al. Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3). Int J Refract Met Hard Mater. 2020;91:105249. doi:10.1016/j.ijrmhm.2020.105249
  • Gonzalez-Gutierrez J, Cano S, Schuschnigg S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials. 2018;11:840. doi:10.3390/ma11050840
  • Go J, Hart AJ. Fast desktop-scale extrusion additive manufacturing. Addit Manuf. 2017;18:276–284. doi:10.1016/j.addma.2017.10.016
  • Ashby MF. Overview No. 80. On the engineering properties of materials. Acta Metall. 1989;37:1273–1293. doi:10.1016/0001-6160(89)90158-2
  • Phan DD, Horner JS, Swain ZR, et al. Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique. Addit Manuf. 2020;33:101161. doi:10.1016/j.addma.2020.101161
  • Moretti M, Rossi A, Senin N. In-process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication. Addit Manuf. 2021;38:101817. doi:10.1016/j.addma.2020.101817
  • Aumnate C, Pongwisuthiruchte A, Pattananuwat P, et al. Fabrication of ABS/graphene oxide composite filament for fused filament fabrication (FFF) 3D printing. Adv Mater Sci Eng. 2018;2018:2830437. doi:10.1155/2018/2830437
  • Go J, Schiffres SN, Stevens AG, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf. 2017;16:1–11. doi:10.1016/j.addma.2017.03.007
  • Rangarajan S, Qi G, Venkataraman N, et al. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. J Am Ceram Soc. 2000;83:1663–1669. doi:10.1111/j.1151-2916.2000.tb01446.x
  • NinjaTek. NinjaFlex® 3D printing filament: flexible polyurethane material for FDM printers. 2016. p. 1. Available from: https://ninjatek.com/wp-content/uploads/NinjaFlex-TDS.pdf
  • BCN3D technical data sheet PLA. 2018. p. 1–3. Available from: https://ultimaker.com/download/74972/UM180821TDSABSRBV12.pdf
  • Oswald NRT. Polymer rheology. J Appl Polym Sci. 2015;5(14):S5. doi:10.1002/app.1961.070051418
  • Heller BP, Smith DE, Jack DA. Effects of extrudate swell and nozzle geometry on fiber orientation in fused filament fabrication nozzle flow. Addit Manuf. 2016;12:252–264. doi:10.1016/j.addma.2016.06.005
  • Geng P, Zhao J, Wu W, et al. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J Manuf Process. 2019;37:266–273. doi:10.1016/j.jmapro.2018.11.023
  • Hopmann WMC. Extrusion dies for plastics and rubber: design and engineering computations. München: Carl Hanser Verlag GmbH Co KG; 2016.
  • Avila AF, Morais DTS. A multiscale investigation based on variance analysis for hand lay-up composite manufacturing. Compos Sci Technol. 2005;65:827–838. doi:10.1016/j.compscitech.2004.05.021