1,024
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A BIM-enabled robot control system for automated integration between rebar reinforcement and 3D concrete printing

, , , , ORCID Icon, & ORCID Icon show all
Article: e2332423 | Received 24 Jan 2024, Accepted 13 Mar 2024, Published online: 26 Mar 2024

References

  • Mechtcherine V, van Tittelboom K, Kazemian A, et al. A roadmap for quality control of hardening and hardened printed concrete. Cem Concr Res. 2022;157:106800. doi:10.1016/j.cemconres.2022.106800
  • Tay YWD, Lim SG, Phua SLB, et al. Exploring carbon sequestration potential through 3D concrete printing. Virtual Phys Prototyp. 2023;18:e2277347. doi:10.1080/17452759.2023.2277347
  • Jiang J, Xu X, Stringer J. Optimisation of multi-part production in additive manufacturing for reducing support waste. Virtual Phys Prototyp. 2019;14:219–228. doi:10.1080/17452759.2019.1585555
  • Tay YWD, Tan MJ. Sustainability and life cycle analysis of 3D printing industries. Key Eng Mater. 2023;968:161–166. doi:10.4028/p-zbzez1
  • Weng Y, Li M, Ruan S, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod. 2020;261:121245. doi:10.1016/j.jclepro.2020.121245
  • Mechtcherine V, Buswell R, Kloft H, et al. Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cem Concr Compos. 2021;119:103964. doi:10.1016/j.cemconcomp.2021.103964
  • Baz B, Aouad G, Leblond P, et al. Mechanical assessment of concrete – steel bonding in 3D printed elements. Constr Build Mater. 2020;256:119457. doi:10.1016/j.conbuildmat.2020.119457
  • Zhu B, Nematollahi B, Pan J, et al. 3D concrete printing of permanent formwork for concrete column construction. Cem Concr Compos. 2021;121:104039. doi:10.1016/j.cemconcomp.2021.104039
  • Lim JH, Panda B, Pham QC. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Constr Build Mater. 2018;178:32–41. doi:10.1016/j.conbuildmat.2018.05.010
  • Mechtcherine V, Grafe J, Nerella VN, et al. 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour. Constr Build Mater. 2018;179:125–137. doi:10.1016/j.conbuildmat.2018.05.202
  • Teng F, Li M, Zhang D, et al. BIM-enabled collaborative-robots 3D concrete printing to construct MiC with reinforcement. HKIE Trans. 2023. doi:10.33430/v30n1thie-2022-0023
  • Ma G, Li Z, Wang L, et al. Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater Lett. 2019;235:144–147. doi:10.1016/j.matlet.2018.09.159
  • Marchment T, Sanjayan J. Mesh reinforcing method for 3D concrete printing. Autom Constr. 2020;109:102992. doi:10.1016/j.autcon.2019.102992
  • Huangshang Tenda. Chinese construction company 3D prints an entire two-story house on-site in 45 days. Available at: https://3dprint.com/138664/huashang-tengda-3d-print-house/.
  • Grasser G, Pammer L, Köll H, et al. Complex architecture in printed concrete: the case of the innsbruck university 350th anniversary pavilion COHESION. In: RILEM bookseries. Springer; 2020. p. 1116–1127. doi:10.1007/978-3-030-49916-7_106.
  • Bos FP, Ahmed ZY, Jutinov ER, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel). 2017;10:1314. doi:10.3390/ma10111314
  • Asprone D, Auricchio F, Menna C, et al. 3D printing of reinforced concrete elements: technology and design approach. Constr Build Mater. 2018;165:218–231. doi:10.1016/j.conbuildmat.2018.01.018
  • Ding L, Jiang W, Zhou Y, et al. BIM-based task-level planning for robotic brick assembly through image-based 3D modeling. Adv Eng Informatics. 2020;43:100993. doi:10.1016/j.aei.2019.100993
  • Barlish K, Sullivan K. How to measure the benefits of BIM - a case study approach. Autom Constr. 2012;24:149–159. doi:10.1016/j.autcon.2012.02.008
  • Heaton J, Parlikad AK, Schooling J. Design and development of BIM models to support operations and maintenance. Comput Ind. 2019;111:172–186. doi:10.1016/j.compind.2019.08.001
  • Zhu J, Wu P. BIM/GIS data integration from the perspective of information flow. Autom Constr. 2022;136:104166. doi:10.1016/j.autcon.2022.104166
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12:261–276. doi:10.1080/17452759.2017.1326724
  • Chong OW, Zhang J, Voyles RM, et al. BIM-based simulation of construction robotics in the assembly process of wood frames. Autom Constr. 2022;137:104194. doi:10.1016/j.autcon.2022.104194
  • Davtalab O, Kazemian A, Khoshnevis B. Perspectives on a BIM-integrated software platform for robotic construction through contour crafting. Autom Constr. 2018;89:13–23. doi:10.1016/j.autcon.2018.01.006
  • Kim S, Peavy M, Huang P-C, et al. Development of BIM-integrated construction robot task planning and simulation system. Autom Constr. 2021;127:103720. doi:10.1016/j.autcon.2021.103720
  • Chen J, Lu W, Fu Y, et al. Automated facility inspection using robotics and BIM: A knowledge-driven approach. Adv Eng Informatics. 2023;55:101838. doi:10.1016/j.aei.2022.101838
  • Zhao X, Jin Y, Selvaraj NM, et al. Platform-independent visual installation progress monitoring for construction automation. Autom Constr. 2023;154:104996. doi:10.1016/j.autcon.2023.104996
  • Ali AK, Lee OJ, Song H. Robot-based facade spatial assembly optimization. J Build Eng. 2021;33:101556. doi:10.1016/j.jobe.2020.101556
  • Weng Y, Mohamed NAN, Lee BJS, et al. Extracting BIM information for lattice toolpath planning in digital concrete printing with developed dynamo script: a case study. J Comput Civ Eng. 2021;35:05021001. doi:10.1061/(asce)cp.1943-5487.0000964
  • Wang Q, Cheng JCP, Sohn H. Automated estimation of reinforced precast concrete rebar positions using colored laser scan data. Comput Civ Infrastruct Eng. 2017;32:787–802. doi:10.1111/mice.12293
  • Li Y, Lu Y, Chen J. A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector. Autom Constr. 2021;124:103602. doi:10.1016/j.autcon.2021.103602
  • Chang C-C, Huang T-W, Chen Y-H, et al. Autonomous dimensional inspection and issue tracking of rebar using semantically enriched 3D models. Autom Constr. 2024;160:105303. doi:10.1016/j.autcon.2024.105303
  • Chi H-L, Kim M-K, Liu K-Z, et al. Rebar inspection integrating augmented reality and laser scanning. Autom Constr. 2022;136:104183. doi:10.1016/j.autcon.2022.104183
  • Ming Q, Miao L, Zhou Z, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images. IEEE Trans Geosci Remote Sens. 2021;60:1–14. doi:10.1109/TGRS.2021.3095186
  • Gu S, Zhu H, Lin X, et al. Truss member registration for implementing autonomous gripping in biped climbing robots. Autom Constr. 2022;136:104146. doi:10.1016/j.autcon.2022.104146
  • Anane W, Iordanova I, Ouellet-Plamondon C. BIM-driven computational design for robotic manufacturing in off-site construction: an integrated design-to-manufacturing (DtM) approach. Autom Constr. 2023;150:104782. doi:10.1016/j.autcon.2023.104782
  • Di Biccari C, Calcerano F, D’Uffizi F, et al. Building information modeling and building performance simulation interoperability: state-of-the-art and trends in current literature. Adv Eng Informatics. 2022;54:101753. doi:10.1016/j.aei.2022.101753
  • Corke P. Integrating ROS and MATLAB [ros topics]. IEEE Robot Autom Mag. 2015;22:18–20. doi:10.1109/mra.2015.2418513
  • Bergamini L, Sposato M, Pellicciari M, et al. Deep learning-based method for vision-guided robotic grasping of unknown objects. Adv Eng Informatics. 2020;44:101052. doi:10.1016/j.aei.2020.101052
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11:209–225. doi:10.1080/17452759.2016.1209867
  • Fernández-Rodríguez S, Cortés-Pérez JP, Muriel PP, et al. Environmental impact assessment of pinaceae airborne pollen and green infrastructure using BIM. Autom Constr. 2018;96:494–507. doi:10.1016/j.autcon.2018.10.011
  • Gao Y, Meng J, Shu J, et al. BIM-based task and motion planning prototype for robotic assembly of COVID-19 hospitalisation light weight structures. Autom Constr. 2022;140:104370. doi:10.1016/j.autcon.2022.104370
  • Weng Y, Mohamed NAN, Lee BJS, et al. Extracting BIM information for lattice toolpath planning in digital concrete printing with developed dynamo script: a case study. J Comput Civ Eng. 2021;35:05021001. doi:10.1061/(asce)cp.1943-5487.0000964
  • Yan Y, Tong L, Song K, et al. SISG-Net: simultaneous instance segmentation and grasp detection for robot grasp in clutter. Adv Eng Informatics. 2023;58:102189. doi:10.1016/j.aei.2023.102189
  • Zhang L, Wang H, Wang L, et al. Constraint loss for rotated object detection in remote sensing images. In: Remote Sens. IEEE; 2021. p. 840–845. doi:10.3390/rs13214291
  • Jiang J, Luo X, Luo Q, et al. An overview of hand-eye calibration. Int J Adv Manuf Technol. 2022;119:77–97. doi:10.1007/s00170-021-08233-6
  • Nguyen MT, Yuan C, Huang JH. Kinematic analysis of a 6-dof robotic arm. In: Mech Mach Sci. Springer; 2019. p. 2965–2974. doi:10.1007/978-3-030-20131-9_292
  • Tan L, Huangfu T, Wu L. Comparison of YOLO v3, faster R-CNN, and SSD for real-time pill identification, ArXiv. (2021). doi:10.21203/rs.3.rs-668895/v1.
  • Li M, Zhang Z, Lei L, et al. Agricultural greenhouses detection in high-resolution satellite images based on convolutional neural networks: comparison of faster R-CNN, YOLO v3 and SSD. Sensors (Switzerland). 2020;20:1–14. doi:10.3390/s20174938
  • Nurcahyo R, Iqbal M. Comparative analysis of deep learning models for vehicle detection. J Syst Eng Inf Technol. 2022;1:27–32. doi:10.29207/joseit.v1i1.1960
  • Qing Y, Liu W, Feng L, et al. Improved YOLO network for free-angle remote sensing target detection. Remote Sens. 2021;13:2171. doi:10.3390/rs13112171
  • Yue X, Li H, Shimizu M, et al. YOLO-GD: A deep learning-based object detection algorithm for empty-dish recycling robots. Machines. 2022;10:294. doi:10.3390/machines10050294
  • Salman ME, Çakirsoy Çakar G, Azimjonov J, et al. Automated prostate cancer grading and diagnosis system using deep learning-based Yolo object detection algorithm. Expert Syst Appl. 2022;201:117148. doi:10.1016/j.eswa.2022.117148
  • Sharma T, Debaque B, Duclos N, et al. Deep learning-based object detection and scene perception under bad weather conditions. Electron. 2022;11:563. doi:10.3390/electronics11040563
  • Wang Z, Jin L, Wang S, et al. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol Technol. 2022;185:111808. doi:10.1016/j.postharvbio.2021.111808
  • Bay H, Ess A, Tuytelaars T, et al. Speeded-Up Robust Features (SURF). Comput Vis Image Underst. 2008;110:346–359. doi:10.1016/j.cviu.2007.09.014
  • Jian Z, Liu J. Cross teacher pseudo supervision: enhancing semi-supervised crack segmentation with consistency learning. Adv Eng Informatics. 2024;59:102279. doi:10.1016/j.aei.2023.102279
  • Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI 2020 - 34th AAAI Conf Artif Intell. 2020. p. 12993–13000. doi:10.1609/aaai.v34i07.6999.
  • Cao B, Zhang B, Zheng W, et al. Real-time, highly accurate robotic grasp detection utilizing transfer learning for robots manipulating fragile fruits with widely variable sizes and shapes. Comput Electron Agric. 2022;200:107254. doi:10.1016/j.compag.2022.107254
  • Al-Sabbag ZA, Yeum CM, Narasimhan S. Interactive defect quantification through extended reality. Adv Eng Informatics. 2022;51:101473. doi:10.1016/j.aei.2021.101473
  • Zheng Y, Zhou G, Lu B. A multi-scale rebar detection network with an embedded attention mechanism. Appl Sci. 2023;13:8233. doi:10.3390/app13148233
  • Qu F, Li C, Peng K, et al. Research on detection and identification of dense rebar based on lightweight network. In: Data Sci 6th Int Conf Pioneer Comput Sci Eng Educ ICPCSEE 2020, Taiyuan, China, Sept. 18-21, 2020, Proceedings, Part I 6. Springer; 2020. p. 440–446. doi:10.1007/978-981-15-7981-3_32.
  • Mardiati R, Mulyana E, Maryono I, et al. The derivation of matrix transformation from pixel coordinates to real-world coordinates for vehicle trajectory tracking. In: 2019 IEEE 5th Int Conf Wirel Telemat. IEEE; 2019. p. 1–5. doi:10.1109/ICWT47785.2019.8978254.
  • Wang L, Li L, Wang H, et al. Real-time vehicle identification and tracking during agricultural master-slave follow-up operation using improved YOLO v4 and binocular positioning. Proc Inst Mech Eng Part C J Mech Eng Sci. 2023;237:1393–1404. doi:10.1177/09544062221130928
  • Yu F, Zhang G, Zhao F, et al. Improved YOLO-v5 model for boosting face mask recognition accuracy on heterogeneous IoT computing platforms. Internet of Things (Netherlands). 2023;23:100881. doi:10.1016/j.iot.2023.100881
  • Ma G, Buswell R, da Silva WRL, et al. Technology readiness: A global snapshot of 3D concrete printing and the frontiers for development. Cem Concr Res. 2022;156:106774. doi:10.1016/j.cemconres.2022.106774
  • Ahmed GH, Askandar NH, Jumaa GB. A review of largescale 3DCP: material characteristics, mix design, printing process, and reinforcement strategies. In: Structures. Elsevier; 2022. p. 508–532. doi:10.1016/j.istruc.2022.06.068.
  • Baduge SK, Navaratnam S, Abu-Zidan Y, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. In: Structures. Elsevier; 2021. p. 1597–1609. doi:10.1016/j.istruc.2020.12.061.
  • Stieler D, Schwinn T, Menges A. Additive formwork in precast construction-agent-based methods for fabrication-aware modularization of concrete building elements. In: Proc 27th Conf Comput Aided Archit Des Res Asia (CAADRIA). Sydney: CAADRIA; 2022. p. 81–90. doi:10.52842/conf.caadria.2022.2.081.
  • Yu S, Du H, Sanjayan J. Aggregate-bed 3D concrete printing with cement paste binder. Cem Concr Res. 2020;136:106169. doi:10.1016/j.cemconres.2020.106169