490
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hygro-thermal coupling on 4D-printed biocomposites as key for meteosensitive shape-changing materials

, , , , &
Article: e2335233 | Received 08 Feb 2024, Accepted 20 Mar 2024, Published online: 03 Apr 2024

References

  • van Manen T, Janbaz S, Jansen KMB, et al. 4D printing of reconfigurable metamaterials and devices. Commun Mater. Dec. 2021;2(1):56. doi:10.1038/s43246-021-00165-8
  • Tibbits S. 4D printing: multi-material shape change. Archit Design. Jan. 2014;84(1):116–121. doi:10.1002/ad.1710
  • Reichert S, Menges A, Correa D. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput-Aid Design. Mar. 2015;60:50–69. doi:10.1016/j.cad.2014.02.010
  • Rüggeberg M, Burgert I. Bio-inspired wooden actuators for large scale applications. PLoS One. Apr. 2015;10:e0120718. doi:10.1371/journal.pone.0120718
  • Kam D, et al. Wood warping composite by 3D printing. Polymers. Feb. 2022;14(4):733. doi:10.3390/polym14040733
  • Correa D, et al. 3D-printed wood: programming hygroscopic material transformations. 3D Print Addit Manuf. Sep. 2015;2(3):106–116. doi:10.1089/3dp.2015.0022
  • Le Duigou A, Castro M. Hygromorph biocomposites: effect of fibre content and interfacial strength on the actuation performances. Ind Crops Prod. May 2017;99:142–149. doi:10.1016/j.indcrop.2017.02.004
  • Le Duigou A, Keryvin V, Beaugrand J, et al. Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Compos Part A: Appl Sci Manuf. Jan. 2019;116:36–45. doi:10.1016/j.compositesa.2018.10.018
  • Le Duigou A, Requile S, Beaugrand J, et al. Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Mater Struct. Dec. 2017;26(12):125009. doi:10.1088/1361-665X/aa9410
  • Reyssat E, Mahadevan L. Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface. Oct. 2009;6(39):951–957. doi:10.1098/rsif.2009.0184
  • Elbaum R, Zaltzman L, Burgert I, et al. The role of wheat awns in the seed dispersal unit. Science. May 2007;316(5826):884–886. doi:10.1126/science.1140097
  • Timoshenko S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. Sep. 1925;11(3):233. doi:10.1364/JOSA.11.000233
  • Le Duigou A, Fruleux T, Matsuzaki R, et al. 4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: towards sustainable metamaterials. Mater Des. Dec. 2021;211:110158. doi:10.1016/j.matdes.2021.110158
  • de Kergariou C, Kim BC, Perriman A, et al. Design of 3D and 4D printed continuous fibre composites via an evolutionary algorithm and voxel-based finite elements: application to natural fibre hygromorphs. Addit Manuf. Nov. 2022;59:103144. doi:10.1016/j.addma.2022.103144
  • Fruleux T, Castro M, Sauleau P, et al. Matrix stiffness: A key parameter to control hydro-elasticity and morphing of 3D printed biocomposite. Compos Part A: Appl Sci Manuf. May 2022;156:106882. doi:10.1016/j.compositesa.2022.106882
  • de Kergariou C, Saidani-Scott H, Perriman A, et al. The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) composites. Compos Part A: Appl Sci Manuf. Apr. 2022;155:106805. doi:10.1016/j.compositesa.2022.106805
  • Colinart T, Glouannec P. Temperature dependence of sorption isotherm of hygroscopic building materials. Part 1: experimental evidence and modeling. Energy Build. 15 Mar 2017;139:360–370. doi:10.1016/j.enbuild.2016.12.082
  • Wang N, Brennan JG. Moisture sorption isotherm characteristics of potatoes at four temperatures. J Food Eng. Jan. 1991;14(4):269–287. doi:10.1016/0260-8774(91)90018-N
  • Willems W. A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung. 2015;69(1):67–75. doi:10.1515/hf-2014-0069
  • Ouertani S, Azzouz S, Hassini L, et al. Moisture sorption isotherms and thermodynamic properties of jack pine and palm wood: comparative study. Ind Crops Prod. May 2014;56:200–210. doi:10.1016/j.indcrop.2014.03.004
  • Espert A, Vilaplana F, Karlsson S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A: Appl Sci Manuf. Nov. 2004;35(11):1267–1276. doi:10.1016/j.compositesa.2004.04.004
  • Li Y, Xue B. Hydrothermal ageing mechanisms of unidirectional flax fabric reinforced epoxy composites. Polym Degrad Stab. Apr. 2016;126:144–158. doi:10.1016/j.polymdegradstab.2016.02.004
  • Scida D, Assarar M, Poilâne C, et al. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos Part B: Eng. May 2013;48:51–58. doi:10.1016/j.compositesb.2012.12.010
  • Retegi A, Arbelaiz A, Alvarez P, et al. Effects of hygrothermal ageing on mechanical properties of flax pulps and their polypropylene matrix composites. J Appl Polym Sci. Nov. 2006;102(4):3438–3445. doi:10.1002/app.24331
  • Le Duigou A, Davies P, Baley C. Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol. Feb. 2010;70(2):231–239. doi:10.1016/j.compscitech.2009.10.009
  • Ru J, et al. A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior. Smart Mater Struct. Feb. 2018;27(2):02LT01. doi:10.1088/1361-665X/aaa581
  • Le Duigou A, Chabaud G, Scarpa F, et al. Bioinspired electro-thermo-hygro reversible shape-changing materials by 4D printing. Adv Funct Mater. 2019;29(40):10. doi:10.1002/adfm.201903280
  • Garalde RA, Thipmanee R, Jariyasakoolroj P, et al. The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon. Mar. 2019;5(3):e01251. doi:10.1016/j.heliyon.2019.e01251
  • Assarar M, Scida D, El Mahi A, et al. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des. Feb. 2011;32(2):788–795. doi:10.1016/j.matdes.2010.07.024
  • Gouanvé F, Marais S, Bessadok A, et al. Kinetics of water sorption in flax and PET fibers. Eur Polym J. Feb. 2007;43(2):586–598. doi:10.1016/j.eurpolymj.2006.10.023
  • Célino A, Fréour S, Jacquemin F, et al. Characterization and modeling of the moisture diffusion behavior of natural fibers. J Appl Polym Sci. Oct. 2013;130(1):297–306. doi:10.1002/app.39148
  • Shah DU. Damage in biocomposites: stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos Part A: Appl Sci Manuf. Apr. 2016;83:160–168. doi:10.1016/j.compositesa.2015.09.008
  • Hill CAS, Norton A, Newman G. The water vapor sorption behavior of natural fibers. J Appl Polym Sci. May 2009;112(3):1524–1537. doi:10.1002/app.29725
  • Tang XC, Pikal MJ, Taylor LS. The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharm Res. 2002;19(4):7. doi:10.1023/a:1015199713635
  • Ethmane Kane CS, Kouhila M, Lamharrar A, et al. Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. J. Ren Energies. Jun. 2008: 2008;11(2):181–195.
  • Gouanvé F, Marais S, Bessadok A, et al. Study of water sorption in modified flax fibers. J Appl Polym Sci. Sep. 2006;101(6):4281–4289. doi:10.1002/app.23661
  • Thomason J, Yang L, Gentles F. Characterisation of the anisotropic thermoelastic properties of natural fibres for composite reinforcement. Fibers. Sep. 2017;5(4):36. doi:10.3390/fib5040036
  • Cichocki Jr F. Thermoelastic anisotropy of a natural fiber. Compos Sci Technol. Apr. 2002;62(5):669–678. doi:10.1016/S0266-3538(02)00011-8
  • Saidane EH, Scida D, Ayad R. Thermo-mechanical behaviour of flax/green epoxy composites: evaluation of thermal expansion coefficients and application to internal stress calculation. Ind Crops Prod. Oct. 2021;170:113786. doi:10.1016/j.indcrop.2021.113786
  • le Duigou A, Merotte J, Bourmaud A, et al. Hygroscopic expansion: A key point to describe natural fibre/polymer matrix interface bond strength. Compos Sci Technol. Oct. 2017;151:228–233. doi:10.1016/j.compscitech.2017.08.028
  • Péron M, Célino A, Castro M, et al. Study of hygroscopic stresses in asymmetric biocomposite laminates. Compos Sci Technol. Jan. 2019;169:7–15. doi:10.1016/j.compscitech.2018.10.027
  • Gager V. Contribution to the study of thermo-hygro-mechanical properties of flax/polypropylene nonwoven composites with controlled porosity rates for automotive applications. Thesis, Lorient; 2017. [accessed 2023 Nov. 27]. [Online]. Available: https://www.theses.fr/s184592.
  • Masseteau B, Michaud F, Irle M, et al. An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite. Compos Part A: Appl Sci Manuf. May 2014;60:32–37. doi:10.1016/j.compositesa.2014.01.011
  • Thuault A, Eve S, Blond D, et al. Effects of the hygrothermal environment on the mechanical properties of flax fibres. J Compos Mater. Jun. 2014;48(14):1699–1707. doi:10.1177/0021998313490217