1,064
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of scale effect on surface morphology in laser powder bed fusion technology

, , , , , , , , , , , , , , & show all
Article: e2336157 | Received 22 Oct 2023, Accepted 22 Mar 2024, Published online: 08 Apr 2024

References

  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578. doi:10.1016/j.pmatsci.2019.100578
  • Tan CL, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of Key aeroengine materials. Int J Mach Tools Manuf. 2021;170:103804. doi:10.1016/j.ijmachtools.2021.103804
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117:100724. doi:10.1016/j.pmatsci.2020.100724
  • Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder Bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J Mater Res Technol. 2022;20:2109–2172. doi:10.1016/j.jmrt.2022.07.121
  • Sefene EM. State-of-the-Art of selective laser melting process: A comprehensive review. J Manuf Syst. 2022;63:250–274. doi:10.1016/j.jmsy.2022.04.002
  • Tradowsky U, White J, Ward R, et al. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Des. 2016;105:212–222. doi:10.1016/j.matdes.2016.05.066
  • Fatemi A, Molaei R, Sharifimehr S, et al. Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect. Int J Fatigue. 2017;99:187–201. doi:10.1016/j.ijfatigue.2017.03.002
  • Spierings AB, Starr TL, Wegener K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J. 2013;19(2):88–94. doi:10.1108/13552541311302932
  • Pal S, Lojen G, Hudak R, et al. As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting. Addit Manuf. 2020;33:101147. doi:10.1016/j.addma.2020.101147
  • Balbaa M, Mekhiel S, Elbestawi M, et al. On selective laser melting of inconel 718: densification, surface roughness, and residual stresses. Mater Des. 2020;193:108818. doi:10.1016/j.matdes.2020.108818
  • Wang LZ, Wang S, Wu JJ. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol. 2017;96:88–96. doi:10.1016/j.optlastec.2017.05.006
  • Dursun G, Ibekwe S, Li GQ, et al. Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Mater Today Proc. 2020;26:387–393. doi:10.1016/j.matpr.2019.12.061
  • Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-Bed laser-fused materials. Mater Sci Eng A. 2016;651:198–213. doi:10.1016/j.msea.2015.10.068
  • Zheng M, Wei L, Chen J, et al. Surface morphology evolution during pulsed selective laser melting: numerical and experimental investigations. Appl Surf Sci. 2019;496:143649. doi:10.1016/j.apsusc.2019.143649
  • Yuan WH, Chen H, Cheng T, et al. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater Des. 2020;189:108542. doi:10.1016/j.matdes.2020.108542
  • Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: properties, performance, applications and challenges. Mater Des. 2019;183:108137. doi:10.1016/j.matdes.2019.108137
  • Chen LY, Liang SX, Liu YJ, et al. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R Rep. 2021;146:100648. doi:10.1016/j.mser.2021.100648
  • Plessis AD, Razavi SMJ, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review. Prog Mater Sci. 2021;125:100918. doi:10.1016/j.pmatsci.2021.100918
  • Pioneering Bionic 3D Printing. https://www.airbus.com/en/newsroom/news/2016-03-pioneering-bionic-3d-printing.
  • Applications of Aviation, Aerospace, Engine, Mold, and Automotive. https://www.xa-blt.com/en/.
  • Wan HY, Luo YW, Zhang B, et al. Effects of surface roughness and build thickness on fatigue properties of selective laser melted inconel 718 at 650 °C. Int J Fatigue. 2020;137:105654. doi:10.1016/j.ijfatigue.2020.105654
  • Zhang ZY, Yang X, Song F, et al. Assessment of microstructural evolution and associated tensile behavior in thin-walled Ti6Al4V parts manufactured via selective laser melting. Mater Charact. 2022;194:112481. doi:10.1016/j.matchar.2022.112481
  • Poncelet O, Marteleur M, Rest CVD, et al. Critical assessment of the impact of process parameters on vertical roughness and hardness of thin walls of AlSi10Mg processed by laser powder bed fusion. Addit Manuf. 2021;38:101801. doi:10.1016/j.addma.2020.101801
  • Yu TY, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des. 2019;182:108062. doi:10.1016/j.matdes.2019.108062
  • Careri F, Khan RHU, Todd C, et al. Additive manufacturing of heat exchangers in aerospace applications: a review. Appl Therm Eng. 2023;235:121387. doi:10.1016/j.applthermaleng.2023.121387
  • Razavi SMJ, Hooreweder BV, Berto F. Effect of build thickness and geometry on quasi-static and fatigue behavior of Ti-6Al-4V produced by electron beam melting. Addit Manuf. 2020;36:101426. doi:10.1016/j.addma.2020.101426
  • Feng Z, Wang XM, Tan H, et al. Effect of heat treatment patterns on porosity, microstructure, and mechanical properties of selective laser melted TiB2/Al-Si-Mg composite. Mater Sci Eng A. 2022;855:143932. doi:10.1016/j.msea.2022.143932
  • Feng Z, Tan H, Fang YB, et al. Selective laser melting of TiB2/AlSi10Mg composite: processability, microstructure and fracture behavior. J Mater Process Technol. 2022;299:117386. doi:10.1016/j.jmatprotec.2021.117386
  • Hao JB, Wei L, Yang HO, et al. Surface morphology evolution of GTD-450 stainless steel during laser powder Bed fusion. Vacuum. 2023;213:112107. doi:10.1016/j.vacuum.2023.112107
  • Grimm T, Wiora G, Witt G. Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf Topogr Metrol Prop. 2015;3(1):014001. doi:10.1088/2051-672X/3/1/014001
  • Cho SY, Shin GY, Lee KY, et al. Post-Building successive treatments using surface laser remelting and ultrasonic nanocrystalline surface modification for rough surface built via directed energy deposition. J Manuf Process. 2022;84:1076–1093. doi:10.1016/j.jmapro.2022.09.039
  • Samadian K, Waele WD. Fatigue crack growth model incorporating surface waviness for wire+Arc additively manufactured components. Proc Struct Integr. 2020;28:1846–1855. doi:10.1016/j.prostr.2020.11.008
  • Safdar A, He HZ, Wei LY, et al. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp J. 2012;18:401–408. doi:10.1108/13552541211250391
  • Liu BQ, Fang G, Lei LP, et al. Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry. Int J Mech Sci. 2022;228:107478. doi:10.1016/j.ijmecsci.2022.107478
  • Kazemi Z, Soleimani M, Rokhgireh H, et al. Melting pool simulation of 316L samples manufactured by selective laser melting method, comparison with experimental results. Int J Therm Sci. 2022;176:107538. doi:10.1016/j.ijthermalsci.2022.107538
  • Dong ZC, Zhang XY, Shi WH, et al. Study of size effect on microstructure and mechanical properties of AlSi10Mg samples made by selective laser melting. Materials. 2018;11(12):2463. doi:10.3390/ma11122463
  • Takata N, Kodaira H, Suzuki A, et al. Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting. Mater Charact. 2018;143:18–26. doi:10.1016/j.matchar.2017.11.052
  • Zhang H, Zhao YZ, Wang F, et al. A 3D discrete element-finite difference coupling model for predicting the effective thermal conductivity of metal powder beds. Int J Heat Mass Transfer. 2019;132:1–10. doi:10.1016/j.ijheatmasstransfer.2018.11.118
  • Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of hastelloy X produced by selective laser melting. Addit Manuf. 2017;13:103–112. doi:10.1016/j.addma.2016.10.010
  • Ren ZH, Wei DH, Wang SQ, et al. On the role of pre- and post-contour scanning in laser powder bed fusion: thermal-fluid dynamics and laser reflections. Int J Mech Sci. 2022;226:107389. doi:10.1016/j.ijmecsci.2022.107389
  • Snyder JC, Thole KA. Understanding laser powder bed fusion surface roughness. J Manuf Sci Eng. 2020;142(7):071003. doi:10.1115/1.4046504
  • Yang T, Liu TT, Liao WH, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2019;266:26–36. doi:10.1016/j.jmatprotec.2018.10.015
  • Vrána R, Jaroš J, Koutný D, et al. Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technology. J Manuf Process. 2022;74:640–657. doi:10.1016/j.jmapro.2021.12.006
  • Wu ZH, Narra SP, Rollett A. Exploring the fabrication limits of thin-wall structures in a laser powder Bed fusion process. Int J Adv Manuf Technol. 2020;110(1-2):191–207. doi:10.1007/s00170-020-05827-4
  • Craeghs T, Bechmann F, Berumen S, et al. Feedback control of layerwise laser melting using optical sensors. Phys Procedia. 2010;5:505–514. doi:10.1016/j.phpro.2010.08.078
  • Grasso M, Colosimo BM. Process defects and in situ monitoring methods in metal powder Bed fusion: A review. Meas Sci Technol. 2017;28:044005. doi:10.1088/1361-6501/aa5c4f
  • Xiong ZW, Li HH, Yang H, et al. Micro laser powder Bed fusion of NiTi alloys with superior mechanical property and shape recovery function. Addit Manuf. 2022;57:102960. doi:10.1016/j.addma.2022.102960
  • Britt C, Montgomery CJ, Brand MJ, et al. Effect of processing parameters and strut dimensions on the microstructures and hardness of stainless steel 316L lattice-emulating structures made by powder Bed fusion. Addit Manuf. 2021;40:101943. doi:10.1016/j.addma.2021.101943
  • Wang D, Liu LQ, Deng GW, et al. Recent progress on additive manufacturing of multi-material structures with laser powder Bed fusion. Virtual Phys Prototyp. 2022;17(2):329–365. doi:10.1080/17452759.2022.2028343
  • Kuo CN, Wang YP, Chua CK. Effect of electropolishing on mechanical property enhancement of Ti6Al4 V porous materials fabricated by selective laser melting. Virtual Phys Prototyp. 2022;17(4):919–931. doi:10.1080/17452759.2022.2090383
  • Kuo CN, Peng PC. The strengthening mechanism synergy of heat-treated 3D printed Al-Sc alloy. Virtual Phys Prototyp. 2023;18(1):e2166539. doi:10.1080/17452759.2023.2166539