1,022
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A ribbed strategy disrupts conventional metamaterial deformation mechanisms for superior energy absorption

, , , &
Article: e2337310 | Received 20 Jan 2024, Accepted 25 Mar 2024, Published online: 08 Apr 2024

References

  • Li X, Chua JW, Yu X, et al. 3D-printed lattice structures for sound absorption: current progress, mechanisms and models, structural-property relationships, and future outlook. Adv Sci. 2023: e2305232. doi:10.1002/advs.202305232.
  • Li Z, Li X, Chua JW, et al. Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing. Virtual Phys Prototyp. 2023;18(1):e2166851. doi:10.1080/17452759.2023.2166851.
  • An Q, Li D, Liao W, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv Mater. 2023;35(26):e2300659. doi:10.1002/adma.202300659.
  • Lee J, Lim DD, Park J, et al. Multifunctionality of additively manufactured Kelvin foam for electromagnetic wave absorption and load bearing. Small. 2023: e2305005. doi:10.1002/smll.202305005.
  • Zou B, Liang Z, Zhong D, et al. Magneto-thermomechanically reprogrammable mechanical metamaterials. Adv Mater. 2023;35(8):e2207349. doi:10.1002/adma.202207349.
  • Mueller J, Lewis JA, Bertoldi K. Architected multimaterial lattices with thermally programmable mechanical response. Adv Funct Mater. 2021;32(1):202105128. doi:10.1002/adfm.202105128.
  • Isaac CW, Duddeck F. Current trends in additively manufactured (3D printed) energy absorbing structures for crashworthiness application – a review. Virtual Phys Prototyp. 2022;17(4):1058–1101. doi:10.1080/17452759.2022.2074698.
  • Isaac CW, Duddeck F. Recent progress in 4D printed energy-absorbing metamaterials and structures. Virtual Phys Prototyp. 2023;18(1):e2197436. doi:10.1080/17452759.2023.2197436.
  • Isaac CW, Sokołowski A, Duddeck F, et al. Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loading. Virtual Phys Prototyp. 2023;18(1):e2273296. doi:10.1080/17452759.2023.2273296.
  • Traxel KD, Groden C, Valladares J, et al. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4 V. Mater Sci Eng A-Struct. 2021;809:140925. doi:10.1016/j.msea.2021.140925.
  • Rodrigo C, Xu S, Durandet Y, et al. Mechanical response of functionally graded lattices with different density grading strategies. Thin-Walled Struct. 2023;192:111132. doi:10.1016/j.tws.2023.111132.
  • Wang X, Qin R, Zhang X, et al. Quasi-static and dynamic behavior of additively manufactured metamaterial structures with layered-hybrid topologies. Thin-Walled Struct. 2023;183:110434. doi:10.1016/j.tws.2022.110434.
  • Xiao L, Xu X, Feng G, et al. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. Int J Mech Sci. 2022;219:107093.
  • Zhang J, Huang H, Liu G, et al. Stiffness and energy absorption of additive manufactured hybrid lattice structures. Virtual Phys Prototyp. 2021;16(4):428–443. doi:10.1080/17452759.2021.1954405.
  • Li D, Qin R, Xu J, et al. Topology optimization of thin-walled tubes filled with lattice structures. Int J Mech Sci. 2022;227:107457. doi:10.1016/j.ijmecsci.2022.107457.
  • Wang Z, Zhou Y, Wang X, et al. Compression behavior of strut-reinforced hierarchical lattice—Experiment and simulation. Int J Mech Sci. 2021;210:106749. doi:10.1016/j.ijmecsci.2021.106749.
  • Wang X, Li Z, Li X, et al. Customizable plateau in face-centered cubic hierarchical lattices achieved by self-similar embedded design. Mater Des. 2023;233:112186. doi:10.1016/j.matdes.2023.112186.
  • Bai L, Gong C, Chen X, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations. Int J Mech Sci. 2020;182:105735. doi:10.1016/j.ijmecsci.2020.105735.
  • Wu H, Chen J, Duan K, et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution. ACS Appl Mater Interfaces. 2022;14(37):42504–42512. doi:10.1021/acsami.2c12297.
  • Guo X, Li X, Wang E, et al. Bioinspired hierarchical diamond triply periodic minimal surface lattices with high energy absorption and damage tolerance. Addit Manuf. 2023;76; doi:10.1016/j.addma.2023.103792.
  • Wang Y, Xu F, Gao H, et al. Elastically isotropic truss-plate-hybrid hierarchical microlattices with enhanced modulus and strength. Small. 2023;19(18):e2206024. doi:10.1002/smll.202206024.
  • Bian Y, Wang R, Yang F, et al. Mechanical properties of internally hierarchical multiphase lattices inspired by precipitation strengthening mechanisms. ACS Appl Mater Interfaces. 2023;15(12):15928–15937. doi:10.1021/acsami.2c20063.
  • Wang X, Qin R, Chen B, et al. Multi-scale collaborative optimization of lattice structures using laser additive manufacturing. Int J Mech Sci. 2022;222:107257. doi:10.1016/j.ijmecsci.2022.107257.
  • Wang X, Qin R, Lu J, et al. Laser additive manufacturing of hierarchical multifunctional chiral metamaterial with distinguished damage-resistance and low-frequency broadband sound-absorption capabilities. Mater Des. 2024;238:112659. doi:10.1016/j.matdes.2024.112659.
  • Wang P, Yang F, Zheng B, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials. Adv Funct Mater. 2023: 2305978. doi:10.1002/adfm.202305978.
  • Zeng Q, Duan S, Zhao Z, et al. Inverse design of energy-absorbing metamaterials by topology optimization. Adv Sci. 2023;10(4):e2204977. doi:10.1002/advs.202204977.
  • Cao X, Duan S, Liang J, et al. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section. Int J Mech Sci. 2018;145:53–63. doi:10.1016/j.ijmecsci.2018.07.006.
  • Dong L, Zhang S, Yu K. Ti–6Al–4V truss lattices with a composite topology of double-simple-cubic and body-centered-cubic. Eur J Mech A Solids. 2022;92:104486; doi:10.1016/j.euromechsol.2021.104486.
  • Wei Y-L, Yang Q-S, Liu X, et al. Multi-bionic mechanical metamaterials: a composite of FCC lattice and bone structures. Int J Mech Sci. 2022;213:106857. doi:10.1016/j.ijmecsci.2021.106857.
  • Alomar Z, Concli F. Compressive behavior assessment of a newly developed circular cell-based lattice structure. Mater Des. 2021;205:109716. doi:10.1016/j.matdes.2021.109716.
  • Liu C, Lertthanasarn J, Pham MS. The origin of the boundary strengthening in polycrystal-inspired architected materials. Nat Commun. 2021;12(1):4600. doi:10.1038/s41467-021-24886-z.
  • Zhong H, Das R, Gu J, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model. Mater Today. 2023;68:96–107. doi:10.1016/j.mattod.2023.07.018.
  •  Zhong H, Song T, Li C, et al. The Gibson-Ashby model for additively manufactured metal lattice materials: its theoretical basis, limitations and new insights from remedies. Curr Opin Solid State Mater Sci. 2023;27(3). doi:10.1016/j.cossms.2023.101081
  • Zhang Y, Aiyiti W, Du S, et al. Design and mechanical behaviours of a novel tantalum lattice structure fabricated by SLM. Virtual Phys Prototyp. 2023;18(1):e2192702. doi:10.1080/17452759.2023.2192702.
  • Chua C, Leong Sing S, Chua CK. Characterisation of in-situ alloyed titanium-tantalum lattice structures by laser powder bed fusion using finite element analysis. Virtual Phys Prototyp. 2022;18(1):e2138463. doi:10.1080/17452759.2022.2138463.
  • Wang X, Li X, Li Z, et al. Superior strength, toughness, and damage-tolerance observed in microlattices of aperiodic unit cells. Small. 2024: 2307369. doi:10.1002/smll.202307369.
  • Liu H, Gu D, Qi J, et al. Dimensional effect and mechanical performance of node-strengthened hybrid lattice structure fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2240306. doi:10.1080/17452759.2023.2240306.
  • Ye J, Sun Z, Ding Y, et al. The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices. Thin-Walled Struct. 2023;190:110988. doi:10.1016/j.tws.2023.110988.
  • Zhang X, Jiang L, Yan X, et al. Revealing the apparent and local mechanical properties of heterogeneous lattice: a multi-scale study of functionally graded scaffold. Virtual Phys Prototyp. 2022;18(1):e2120406. doi:10.1080/17452759.2022.2120406.
  • Li L, Yang F, Li P, et al. A novel hybrid lattice design of nested cell topology with enhanced energy absorption capability. Aerosp Sci Technol. 2022;128:107776. doi:10.1016/j.tws.2022.110439.
  • Wang Z, Cao X, Yang H, et al. Additively-manufactured 3D truss-lattice materials for enhanced mechanical performance and tunable anisotropy: simulations & experiments. Thin-Walled Struct. 2023;183:110439. doi:10.1016/j.tws.2022.110439.
  • Wu J, Zhang Y, Yang F, et al. A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances. Addit Man. 2023;76:103764. doi:10.1016/j.addma.2023.103764.
  • Zhang J, Xie S, Li T, et al. A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices. Thin-Walled Struct. 2023;190:110989. doi:10.1016/j.tws.2023.110989.
  • Wang P, Yang F, Li P, et al. Bio-inspired vertex modified lattice with enhanced mechanical properties. Int J Mech Sci. 2023;244:108081. doi:10.1016/j.ijmecsci.2022.108081.
  • Wang P, Yang F, Lu G, et al. Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing. Compos Part B: Eng. 2022;234:109724. doi:10.1016/j.compositesb.2022.109724.
  • Wang P, Yang F, Ru D, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. Mater Des. 2021;210:110116. doi:10.1016/j.matdes.2021.110116.
  • Zhang H, Zhou H, Zhou Z, et al. Energy absorption diagram characteristic of metallic self-supporting 3D lattices fabricated by additive manufacturing and design method of energy absorption structure. Int J Solids Struct. 2021;226–227:111082. doi:10.1016/j.ijsolstr.2021.111082.
  • Li Z, Li X, Wang X, et al. Interpenetrating hollow microlattice metamaterial enables efficient sound-absorptive and deformation-recoverable capabilities. ACS Appl Mater Interfaces. 2023;15(20):24868–24879. doi:10.1021/acsami.3c02498.
  • Li Z, Li X, Wang Z, et al. Multifunctional sound-absorbing and mechanical metamaterials via a decoupled mechanism design approach. Mater Horiz. 2023;10(1):75–87. doi:10.1039/D2MH00977C.
  • Li Z, Wang X, Li X, et al. New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption, Damage Tolerance, and High Specific Strength. ACS Appl Mater Interfaces. 2023;15(7):9940–9952. doi:10.1021/acsami.2c19456.