1,151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unlocking multiscale metallic metamaterials via lithography additive manufacturing

, , , , &
Article: e2339368 | Received 15 Feb 2024, Accepted 31 Mar 2024, Published online: 17 Apr 2024

References

  • Kinsler P, McCall MW. The futures of transformations and metamaterials. Photonics Nanostruct Fundam Appl. 2015;15:10–23. doi: 10.1016/j.photonics.2015.04.005
  • Kadic M, Milton GW, Wegener M. 3D metamaterials. Nature. 2019;1:198–210. doi: 10.1038/s42254-018-0018-y
  • Thompson MK, Moroni G, Vaneker T, et al. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann Manuf Technol. 2016;65:737–760. doi: 10.1016/j.cirp.2016.05.004
  • Zhakeyev A, Wang P, Zhang L, et al. Additive manufacturing: unlocking the evolution of energy materials. Adv Sci. 2017;4:1–44. doi: 10.1002/advs.201700187
  • Jiao P, Mueller J, Raney JR, et al. Mechanical metamaterials and beyond. Nat Commun. 2023;14:6004. doi: 10.1038/s41467-023-41679-8
  • Gao S, Li Z, Van Petegem S, et al. Additive manufacturing of alloys with programmable microstructure and properties. Nat Commun. 2023;14:6752. doi: 10.1038/s41467-023-42326-y
  • Zhang J, Xiao M, Gao L, et al. Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios. Nat Commun. 2023;14:1–8. doi: 10.1038/s41467-023-39792-9
  • Gansel JK, Thiel M, Rill MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325:1513–1516. doi: 10.1126/science.1177031
  • MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353:1512–1522. doi: 10.1126/science.aaf2093
  • Chen XZ, Liu JH, Dong M, et al. Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Mater Horizons. 2019;6:1512–1516. doi: 10.1039/c9mh00279k
  • Qin J, Hu F, Liu Y, et al. Research and application of machine learning for additive manufacturing. Addit Manuf. 2022;52:1–25. doi: 10.1016/j.addma.2022.102691
  • T. Wohlers, T. Gornet, History of additive manufacturing. Wohlers report 2016. 2016. doi: 10.4018/978-1-5225-2289-8.ch001
  • Harinarayana V, Shin YC. Two-photon lithography for three-dimensional fabrication in micro / nanoscale regime : a comprehensive review. Opt Laser Technol. 2021;142:107180. doi: 10.1016/j.optlastec.2021.107180
  • Raoelison RN, Xie Y, Sapanathan T, et al. Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date. Addit Manuf. 2018;19:134–159. doi: 10.1016/j.addma.2017.07.001
  • Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf. 2018;21:628–650. doi: 10.1016/j.addma.2018.04.017
  • Raoelison RN, Verdy C, Liao H. Cold gas dynamic spray additive manufacturing today: deposit possibilities, technological solutions and viable applications. Mater Des. 2017;133:266–287. doi: 10.1016/j.matdes.2017.07.067
  • Wang F, You S, Jiang D, et al. Microstructure evolution, phase formation, corrosion, and mechanical properties of stainless steel fabricated by extrusion-based sintering-assisted additive manufacturing. Addit Manuf. 2023;75:103746. doi: 10.1016/j.addma.2023.103746
  • You S, Jiang D, Wang F, et al. Anisotropic sintering shrinkage behavior of stainless steel fabricated by extrusion-based metal additive manufacturing. J Manuf Process. 2023;101:1508–1520. doi: 10.1016/j.jmapro.2023.07.026
  • Thompson Y, Gonzalez-Gutierrez J, Kukla C, et al. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit Manuf. 2019;30:100861. doi: 10.1016/j.addma.2019.100861
  • Damon J, Dietrich S, Gorantla S, et al. Process porosity and mechanical performance of fused filament fabricated 316L stainless steel. Rapid Prototyp J. 2019;25:1319–1327. doi: 10.1108/RPJ-01-2019-0002
  • Sadaf M, Bragaglia M, Nanni F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J Manuf Process. 2021;67:141–150. doi: 10.1016/j.jmapro.2021.04.055
  • Hahn V, Kiefer P, Frenzel T, et al. Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials. Adv Funct Mater. 2020;30:1–9. doi: 10.1002/adfm.201907795
  • Melentiev R, Harakály G, Stögerer J, et al. High-resolution metal 3D printing via digital light processing (submitted). Addit Manuf. 2024:1–13.
  • Bourell D, Kruth JP, Leu M, et al. Materials for additive manufacturing. CIRP Ann Manuf Technol. 2017;66:659–681. doi: 10.1016/j.cirp.2017.05.00
  • Nguyen HX, Suen H, Poudel B, et al. Development of an innovative, high speed, large-scaled, and affordable metal additive manufacturing process. CIRP Ann Manuf Technol. 2020;69:177–180. doi: 10.1016/j.cirp.2020.04.069
  • Roumanie M, Flassayer C, Resch A, et al. Influence of debinding and sintering conditions on the composition and thermal conductivity of copper parts printed from highly loaded photocurable formulations. SN Appl Sci. 2021;3:1–11. doi: 10.1007/s42452-020-04049-3
  • Melentiev R, Lubineau G. Large-scale hot embossing of one-micron high-aspect-ratio textures on ABS polymer. CIRP J Manuf Sci Technol. 2022;38:340–349. doi: 10.1016/j.cirpj.2022.05.011
  • Melentiev R, Kang C, Shen G, et al. Study on surface roughness generated by micro-blasting on Co-Cr-Mo bio-implant. Wear. 2019;428–429:111–126. doi: 10.1016/j.wear.2019.03.005
  • Mitteramskogler G, Gmeiner R, Felzmann R, et al. Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf. 2014;1-4:110–118. doi: 10.1016/j.addma.2014.08.003
  • Kolb C, Lindemann N, Wolter H, et al. 3D-printing of highly translucent ORMOCER®-based resin using light absorber for high dimensional accuracy. J Appl Polym Sci. 2021;138:1–12. doi: 10.1002/app.49691
  • Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67:1721–1754. doi: 10.1007/s00170-012-4605-2
  • Maleki E, Bagherifard S, Bandini M, et al. Surface post-treatments for metal additive manufacturing : progress, challenges, and opportunities. Addit Manuf. 2021;37:101619. doi: 10.1016/j.addma.2020.101619
  • Catchpole-Smith S, Sélo RRJ, Davis AW, et al. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion. Addit Manuf. 2019;30:100846. doi: 10.1016/j.addma.2019.100846
  • Carolo LCB. A review on the influence of process variables on the surface roughness of Ti-6Al-4V by electron beam powder bed fusion. Addit Manuf. 2022;59:103103. doi: 10.1016/j.addma.2022.103103
  • Zhao X, Zhao Y, Li MD, et al. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat Commun. 2021;12:1–8. doi: 10.1038/s41467-021-23170-4
  • Ozkan B, Sameni F, Goulas A, et al. Hot ceramic lithography of silica-based ceramic cores: the effect of process temperature on vat-photopolymerisation. Addit Manuf. 2022;58:1–17. doi: 10.1016/j.addma.2022.103033
  • Hu K, Zhao P, Li J, et al. High-resolution multiceramic additive manufacturing based on digital light processing. Addit Manuf. 2022;54:102732. doi: 10.1016/j.addma.2022.102732
  • Ng CS, Subramanian AS, Su PC. Zinc oxide nanoparticles as additives for improved dimensional accuracy in vat photopolymerization. Addit Manuf. 2022;59:103118. doi: 10.1016/j.addma.2022.103118
  • Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist. Science. 2017;358:1072–1074. doi: 10.1126/science.aao4640
  • Kumar S, Tan S, Zheng L, et al. Inverse-designed spinodoid metamaterials. npj Comput Mater. 2020;6:1–10. doi: 10.1038/s41524-020-0341-6
  • Meza LR, Zelhofer AJ, Clarke N, et al. Resilient 3D hierarchical architected metamaterials. Proc Natl Acad Sci USA. 2015;112:11502–11507. doi: 10.1073/pnas.1509120112
  • Xia X, Afshar A, Yang H, et al. Electrochemically reconfigurable architected materials. Nature. 2019;573:205–213. doi: 10.1038/s41586-019-1538-z
  • Wang H, Zhang Y, Lin W, et al. A novel two-dimensional mechanical metamaterial with negative Poisson’s ratio. Comput Mater Sci. 2020;171:109232. doi: 10.1016/j.commatsci.2019.109232
  • Lei M, Hong W, Zhao Z, et al. 3D Printing of auxetic metamaterials with digitally reprogrammable shape. ACS Appl Mater Interfaces. 2019;11:22768–22776. doi: 10.1021/acsami.9b06081
  • Kochmann DM, Bertoldi K. Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl Mech Rev. 2017;69:1–24. doi: 10.1115/1.4037966
  • Flowers PF, Reyes C, Ye S, et al. 3D printing electronic components and circuits with conductive thermoplastic filament. Addit Manuf. 2017;18:156–163. doi: 10.1016/j.addma.2017.10.002
  • Pang Y, Cao Y, Chu Y, et al. Additive manufacturing of batteries. Adv Funct Mater. 2020;30:1–22. doi: 10.1002/adfm.201906244
  • Pikul JH, Gang Zhang H, Cho J, et al. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun. 2013;4:1–5. doi: 10.1038/ncomms2747
  • Melentiev R, Lagerweij A, Lubineau G. Multiprocess additive manufacturing via fused deposition modeling, chemical deposition, and electroplating with tough interfacial adhesion. Smart Mater Manuf. 2024;2:100043. doi: 10.1016/j.smmf.2023.100043
  • Melentiev R, Tao R, Lubineau G. Greener electrochemical plating of ABS polymer with unprecedented adhesion via hierarchical micro-nano texturing. J Mater Res Technol. 2023;24:3575–3587. doi: 10.1016/j.jmrt.2023.04.001
  • Melentiev R, Tao R, Li X, et al. Mapping the coating failure modes of electroless plated metal on ABS polymer with micro-nano structured interface. Int J Adhes Adhes. 2023;126:103471.
  • Yudhanto A, Li X, Tao R, et al. Identifying adhesion characteristics of metal-polymer interfaces : recent advances in the case of electroplated acrylonitrile butadiene styrene. Mater Today Commun. 2023;35:106218. doi: 10.1016/j.mtcomm.2023.106218
  • Kotz F, Arnold K, Bauer W, et al. Three-dimensional printing of transparent fused silica glass. Nature. 2017;544:337–339. doi: 10.1038/nature22061
  • Zhang G, Wu Y. Three-dimensional printing of transparent ceramics by lithography-based digital projection. Addit Manuf. 2021;47:102271. doi: 10.1016/j.addma.2021.102271
  • Santamaria R, Salasi M, Bakhtiari S, et al. Microstructure and mechanical behaviour of 316L stainless steel produced using sinter-based extrusion additive manufacturing. J Mater Sci. 2022;57:9646–9662. doi: 10.1007/s10853-021-06828-8
  • Caminero MÁ, Romero A, Chacón JM, et al. Rodríguez, Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: mechanical and geometric properties. Rapid Prototyp J. 2021;27:583–591. doi: 10.1108/RPJ-06-2020-0120
  • Quarto M, Carminati M, D’Urso G. Density and shrinkage evaluation of AISI 316L parts printed via FDM process. Mater Manuf Process. 2021;36:1535–1543. doi: 10.1080/10426914.2021.1905830
  • Jiang D, Ning F. Additive manufacturing of 316L stainless steel by a printing-debinding-sintering method: effects of microstructure on fatigue property. J Manuf Sci Eng Trans ASME. 2021;143:1–10. doi: 10.1115/1.4050190
  • Ait-Mansour I, Kretzschmar N, Chekurov S, et al. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog Addit Manuf. 2020;5:51–57. doi: 10.1007/s40964-020-00124-8
  • Michigan Metrology. Surface Texture Parameters Glossary; 2014. p. 1–102.
  • Melentiev R, Yudhanto A, Tao R, et al. Metallization of polymers and composites : state-of-the-art. Mater Des. 2022;221:1–36. doi: 10.1016/j.matdes.2022.110958
  • Melentiev R, Yu N, Lubineau G. Polymer metallization via cold spray additive manufacturing: a review of process control, coating qualities, and prospective applications. Addit Manuf. 2021;48:102459. doi: 10.1016/j.addma.2021.102459