505
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of sacrificial coating material in laser shock peening of L-PBF printed AlSi10Mg

, , , , , , , , & show all
Article: e2340656 | Received 06 Feb 2024, Accepted 02 Apr 2024, Published online: 17 Apr 2024

References

  • Zulić S, Rostohar D, Kaufman J, et al. Fatigue life enhancement of additive manufactured 316 l stainless steel by LSP using a DPSS laser system. Surf Eng. 2022;38(2):183–190. doi:10.1080/02670844.2022.2060463
  • Peyre P, Fabbro R, Berthe L, et al. Laser-shock processing of materials and related measurements. In: Proceedings of SPIE – The International Society for Optical Engineering. Santa Fe, NM, USA; 1998. Volume 3343, p. 183–193. doi:10.1117/12.321565
  • Peyre P, Sollier A, Chaieb I, et al. FEM simulation of residual stresses induced by laser peening. Eur Phys J Appl Phys. 2003;23(2):83–88. doi:10.1051/epjap:2003037
  • Peyre P, Scherpereel X, Berthe L, et al. Surface modifications induced in 316L steel by laser peening and shot-peening. influence on pitting corrosion resistance. Mater Sci Eng A. 2000;280(2):294–302. doi:10.1016/S0921-5093(99)00698-X
  • Berthe L, Fabbro R, Peyre P, et al. Wavelength dependent of laser shock-wave generation in the water-confinement regime. J Appl Phys. 1999;85(11):7552–7555. doi:10.1063/1.370553
  • Dhakal B, Swaroop S. Review: laser shock peening as post welding treatment technique. J Manuf Process. 2018;32:721–733. doi:10.1016/j.jmapro.2018.04.006
  • Fox JA. Effect of water and paint coatings on laser-irradiated targets. Appl Phys Lett. 1974;24(10):461–464. doi:10.1063/1.1655012
  • Sano Y, Akita K, Sano T. A mechanism for inducing compressive residual stresses on a surface by laser peening without coating. Metals. 2020;10(6):816. doi:10.3390/met10060816
  • Karthik D, Kalainathan S, Swaroop S. Surface modification of 17-4 PH stainless steel by laser peening without protective coating process. Surf Coat Technol. 2015;278:138–145. doi:10.1016/j.surfcoat.2015.08.012
  • Kaufman J, Racek J, Cieslar M, et al. The effect of laser shock peening with and without protective coating on intergranular corrosion of sensitized AA5083. Corros Sci. 2022;194. doi:10.1016/j.corsci.2021.109925
  • Pathak S, Zulić S, Kaufman J, et al. Post-processing of selective laser melting manufactured SS-304L by laser shock peening. J Mater Res Technol. 2022;19:4787–4792. doi:10.1016/j.jmrt.2022.07.014
  • Sundar R, Kumar H, Kaul R, et al. Studies on laser peening using different sacrificial coatings. Surf Eng. 2012;28(8):564–568. doi:10.1179/1743294412Y.0000000029
  • Yella P, Venkateswarlu P, Buddu RK, et al. Role of sacrificial layers on surface characteristics of laser shock peened SS304 plates. Opt Laser Technol. 2018;107:142–149. doi:10.1016/j.optlastec.2018.05.018
  • Sanchez AG, Leering M, Glaser D, et al. Effects of ablative and non-ablative laser shock peening on AA7075-T651 corrosion and fatigue performance. Mater Sci Technol. 2021;37(12):1015–1034. doi:10.1080/02670836.2021.1972272
  • Laurençon M, de Rességuier T, Loison D, et al. Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Mater Sci Eng A. 2019;748:407–417. doi:10.1016/j.msea.2019.02.001
  • Pavan M, Furfari D, Ahmad B, et al. Fatigue crack growth in a laser shock peened residual stress field. Int J Fatigue. 2019;123:157–167. doi:10.1016/j.ijfatigue.2019.01.020
  • Dhakal B, Swaroop S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy. J Mater Process Technol. 2020;282:116640. doi:10.1016/j.jmatprotec.2020.116640
  • Kalentics N, Huang K, Ortega Varela de Seijas M, et al. Laser shock peening: a promising tool for tailoring metallic microstructures in selective laser melting. J Mater Process Technol. 2019;266:612–618. doi:10.1016/j.jmatprotec.2018.11.024
  • Wu Z, Wu S, Duan Y, et al. In situ X-ray tomography of fracture behaviour in low-porosity L-PBF AlSi10Mg alloy with laser shock peening. Virtual Phys Prototyp. 2023;18(1):e2273955. doi:10.1080/17452759.2023.2273955
  • Zhou J, Sun Y, Huang S, et al. Effect of laser peening on friction and wear behavior of medical Ti6Al4 V alloy. Opt Laser Technol. 2019;109:263–269. doi:10.1016/j.optlastec.2018.08.005
  • Ye C, Zhang C, Zhao J, et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review. J Mater Eng Perform. 2021;30(9):6407–6425. doi:10.1007/s11665-021-06021-7
  • Clauer AH. Laser shock peening, the path to production. Metals. 2019;9(6):626. doi:10.3390/met9060626
  • Wu Z, Wu S, Qian W, et al. Structural integrity issues of additively manufactured railway components: progress and challenges. Eng Fail Anal. 2023;149; doi:10.1016/j.engfailanal.2023.107265
  • Stránský O, Beránek L, Pathak S, et al. Porosity and microstructure of L-PBF printed AlSi10Mg thin tubes in laser shock peening. J Mater Res Technol. 2023;27:1683–1695. doi:10.1016/j.jmrt.2023.10.013
  • Bovid S, Kattoura M, Clauer A, et al. Pressure amplification and modelization in laser shock peening of Ti-6Al-4 V and AA7085 with adhesive-backed opaque overlays. J Mater Process Technol. 2022;299:117381. doi:10.1016/j.jmatprotec.2021.117381
  • Wang X, Xia W, Wu X, et al. Scaling law in laser-induced shock effects of NiTi shape memory alloy. Metals. 2018;8(3):174. doi:10.3390/met8030174
  • Fang W, Fei Y, Lu H, et al. Enhanced sound insulation and mechanical properties based on inorganic fillers/thermoplastic elastomer composites. J Thermoplast Compos Mater. 2018;32(7):936–950. doi:10.1177/0892705718766382
  • Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A. 1996;210(1-2):102–113. doi:10.1016/0921-5093(95)10084-9
  • Pathak S, Böhm M, Kaufman J, et al. Microstructure and surface quality of SLM printed miniature helical gear in LSPwC. Surf Eng. 2023;39(2):229–237. doi:10.1080/02670844.2023.2207934
  • Zou S, Wu J, Cao Z, et al. Numerical analysis of mechanical effects of laser shock peening. In: Laser shock peening. Singapore: Springer; 2023;87–124. doi:10.1007/978-981-99-1117-2_4
  • Jarmakani H, Maddox B, Wei CT, et al. Laser shock-induced spalling and fragmentation in vanadium. Acta Mater. 2010;58(14):4604–4628. doi:10.1016/j.actamat.2010.04.027
  • Tollier L, Fabbro R, Bartnicki E. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization. J Appl Phys. 1998;83(3):1224–1230. doi:10.1063/1.366819
  • Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing. J Laser Appl. 1998;10:265–279. doi:10.2351/1.521861