561
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy absorption and piezoresistive characteristics of 3D printed honeycomb composites with hybrid cell architecture

, , &
Article: e2342430 | Received 30 Jan 2024, Accepted 04 Apr 2024, Published online: 18 Apr 2024

References

  • Jiao P, Mueller J, Raney JR, et al. Mechanical metamaterials and beyond. Nat Commun. 2023;14(1):6004. doi:10.1038/s41467-023-41679-8
  • Ha CS, Yao D, Xu Z, et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat Commun. 2023;14(1):5765. doi:10.1038/s41467-023-40854-1
  • Schneider JAJ,J, Schiffer A, Hafeez F, et al. Dynamic crushing of tailored honeycombs realized via additive manufacturing. Int J Mech Sci. 2022;219:107126. doi:10.1016/j.ijmecsci.2022.107126
  • Andrew JJ, Ubaid J, Hafeez F, et al. Impact performance enhancement of honeycombs through additive manufacturing-enabled geometrical tailoring. Int J Impact Eng. 2019;134:103360. doi:10.1016/j.ijimpeng.2019.103360
  • Jia Z, Yu Y, Wang L. Learning from nature: use material architecture to break the performance tradeoffs. Mater Des. 2019;168:107650. doi:10.1016/j.matdes.2019.107650
  • Jia Z, Liu F, Jiang X, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J Appl Phys. 2020;127(15).
  • Vangelatos Z, Komvopoulos K, Grigoropoulos CP. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification. J Mech Phys Solids. 2020;144:104112. doi:10.1016/j.jmps.2020.104112
  • Mistry Y, Weeger O, Morankar S, et al. Bio-inspired selective nodal decoupling for ultra-compliant interwoven lattices. Commun Mater. 2023;4(1):35. doi:10.1038/s43246-023-00363-6
  • Andrew JJ, Verma P, Kumar S. Impact behavior of nanoengineered, 3D printed plate-lattices. Mater Des. 2021;202:109516. doi:10.1016/j.matdes.2021.109516
  • Jia Z, Chen H, Deng Z, et al. Architected microlattices for structural and functional applications: Lessons from nature. Matter. 2023;6(4):1082–1095. doi:10.1016/j.matt.2023.01.017
  • Chen Y, Mai Y-W, Ye L. Perspectives for multiphase mechanical metamaterials. Mater Sci Eng R Rep. 2023;153:100725. doi:10.1016/j.mser.2023.100725
  • Yu H, Zhang J, Zhang S, et al. Bionic structures and materials inspired by plant leaves: a comprehensive review for innovative problem-solving. Prog Mater Sci. 2023;139:101181. doi:10.1016/j.pmatsci.2023.101181
  • Surjadi J, Gao L, Du H, et al. Mechanical metamaterials and their engineering applications, Adv Eng Mater. 2019;21.
  • Andrew JJ, Alhashmi H, Schiffer A, et al. Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites. Mater Des. 2021;208:109863. doi:10.1016/j.matdes.2021.109863
  • Sinha P, Mukhopadhyay T. Programmable multi-physical mechanics of mechanical metamaterials. Mater Sci Eng R Rep. 2023;155:100745. doi:10.1016/j.mser.2023.100745
  • Gao J, Cao X, Xiao M, et al. Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects. Mater Sci Eng R Rep. 2023;156:100755. doi:10.1016/j.mser.2023.100755
  • Le VT, Ha NS, Goo NS. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Compos Part B Eng. 2021;226:109301. doi:10.1016/j.compositesb.2021.109301
  • Zhang Y, Zhao P, Lu Q, et al. Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos A Appl Sci Manuf. 2023;173:107652. doi:10.1016/j.compositesa.2023.107652
  • An Z, Huang Y, Zhang R. High-temperature multispectral stealth metastructure from the microwave-infrared compatible design. Compos Part B Eng. 2023;259:110737. doi:10.1016/j.compositesb.2023.110737
  • Lei H, Shan M, Zhang Y, et al. Design-manufacturing-evaluation integration of microwave absorbing metastructures based on additive manufacturing. Compos Sci Technol. 2023;243:110270. doi:10.1016/j.compscitech.2023.110270
  • Zhang Y, Xu Y, Yu C, et al. Electromagnetic functionalization of mechanical lattice to metastructure with oblique incident broadband microwave absorption. Compos Sci Technol. 2023;244:110308. doi:10.1016/j.compscitech.2023.110308
  • Li J, Fang L, Sun B, et al. Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J Electrochem Soc. 2020;167(3):037561. doi:10.1149/1945-7111/ab6828
  • Gibson RF. A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct. 2010;92(12):2793–2810. doi:10.1016/j.compstruct.2010.05.003
  • Sharma S, Verma A, Rangappa SM, et al. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC's) and conducting polymeric nanocomposites (CPNC's) for multifaceted sensing applications. J Mater Res Technol. 2023;26:5921–5974. doi:10.1016/j.jmrt.2023.08.300
  • Zhao T, Lu M, Mei H, et al. Tetrachiral honeycomb regulated polymer-derived SiFeOC ceramics with tunable piezoresistive effect. Carbon N Y. 2023;210:118076. doi:10.1016/j.carbon.2023.118076
  • Shi X, Zhu Y, Fan X, et al. An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter. 2022;5(5):1547–1562. doi:10.1016/j.matt.2022.02.022
  • Sajjad U, Rehman T-U, Ali M, et al. Manufacturing and potential applications of lattice structures in thermal systems: A comprehensive review of recent advances. Int J Heat Mass Transfer. 2022;198:123352. doi:10.1016/j.ijheatmasstransfer.2022.123352
  • Andrew JJ, Schneider J, Ubaid J, et al. Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading. Int J Impact Eng. 2021;149:103768. doi:10.1016/j.ijimpeng.2020.103768
  • Laguna OH, Lietor PF, Godino FJI, et al. A review on additive manufacturing and materials for catalytic applications: Milestones, key concepts, advances and perspectives. Mater Des. 2021;208:109927. doi:10.1016/j.matdes.2021.109927
  • Babamiri BB, Barnes B, Soltani-Tehrani A, et al. Designing additively manufactured lattice structures based on deformation mechanisms. Addit Manuf. 2021;46:102143. doi:10.1016/j.addma.2021.102143
  • Lu C, Hsieh M-T, Huang Z, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review, Engineering. 2022;17.
  • Ozdemir Z, Hernandez-Nava E, Tyas A, et al. Energy absorption in lattice structures in dynamics: Experiments. Int J Impact Eng. 2016;89:49–61. doi:10.1016/j.ijimpeng.2015.10.007
  • Zhou S, Liu H, Ma J, et al. Deformation behaviors and energy absorption characteristics of a hollow re-entrant auxetic lattice metamaterial. Aerosp Sci Technol. 2023;142:108583. doi:10.1016/j.ast.2023.108583
  • Shu X, Mao Y, Lei M, et al. Toughness enhancement of honeycomb lattice structures through heterogeneous design. Mater Des. 2022;217:110604. doi:10.1016/j.matdes.2022.110604
  • White BC, Garland A, Alberdi R, et al. Interpenetrating lattices with enhanced mechanical functionality. Additive Manufacturing. 2021;38:101741. doi:10.1016/j.addma.2020.101741
  • J. Zhang, G. Lu, Z. You. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos Part B Eng. 2020;201:108340. doi:10.1016/j.compositesb.2020.108340
  • Dutta S, Menon HG, Hariprasad MP, et al. Study of auxetic beams under bending: a finite element approach. Mater Today Proc. 2021;46:9782–9787. doi:10.1016/j.matpr.2020.10.479
  • Zhang Z, Tian Z, Mei Y, et al. Shaping and structuring 2D materials via kirigami and origami. Mater Sci Eng R Rep. 2021;145:100621. doi:10.1016/j.mser.2021.100621
  • Verma S, Yang C-K, Lin C-H, et al. Additive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection molding. Addit Manuf. 2022;49:102463. doi:10.1016/j.addma.2021.102463
  • Wu W, Xia R, Qian G, et al. Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures. Prog Mater Sci. 2023;131:101021. doi:10.1016/j.pmatsci.2022.101021
  • Gao Z, Wang H, Sun H, et al. Additively manufactured high-energy-absorption metamaterials with artificially engineered distribution of bio-inspired hierarchical microstructures. Compos B Eng. 2022;247:110345. doi:10.1016/j.compositesb.2022.110345
  • Dwyer CM, Carrillo JG, De la Peña JAD, et al. Impact performance of 3D printed spatially varying elastomeric lattices. Polymers (Basel). 2023;15(5):1178. doi:10.3390/polym15051178
  • Xu'Loker Z, la Mendola I, Razavi N, et al. Additive manufactured triply periodical minimal surface lattice structures with modulated hybrid topology. Eng Struct. 2023;289:116249. doi:10.1016/j.engstruct.2023.116249
  • Levente S, Horváth R, Rádics J. Design and Study of Fractal-Inspired Metamaterials with Equal Density Made from a Strong and Tough Thermoplastic. Polymers (Basel). 2023;15:2650. doi:10.3390/polym15122650
  • Ingrole A, Hao A, Liang R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des. 2017;117:72–83. doi:10.1016/j.matdes.2016.12.067
  • Nazir A, Arshad AB, Lin SC, et al. Mechanical performance of lightweight-designed honeycomb structures fabricated using multijet fusion additive manufacturing technology. 3D Print Addit Manuf. 2022;9(4):311–325. doi:10.1089/3dp.2021.0004
  • Dhari R, Javanbakht Z, Hall W. On the deformation mechanism of re-entrant honeycomb auxetics under inclined static loads, Mater Lett. 2020;286:129214.
  • Nugroho WT, Dong Y, Pramanik A, et al. Additive manufacturing of re-entrant structures: Well-tailored structures, unique properties, modelling approaches and real applications. Addit Manuf. 2023;78:103829. doi:10.1016/j.addma.2023.103829
  • Ma N, Wentao L, Ma L, et al. Crystal transition and thermal behavior of Nylon 12. e-Polymers. 2020;20:346–352. doi:10.1515/epoly-2020-0039
  • Fischer SF. Energy absorption efficiency of open-cell pure aluminum foams. Mater Lett. 2016;184:208–210. doi:10.1016/j.matlet.2016.08.061
  • Aviles F, Oliva-Avilés A, Cen-Puc M. Piezoresistivity, strain, and damage self-sensing of polymer composites filled with carbon nanostructures. Adv Eng Mater. 2018;20:1701159. doi:10.1002/adem.201701159
  • Verma P, Ubaid J, Varadarajan KM, et al. Synthesis and characterization of carbon nanotube-doped thermoplastic nanocomposites for the additive manufacturing of self-sensing piezoresistive materials. ACS Appl Mater Interfaces. 2022;14(6):8361–8372. doi:10.1021/acsami.1c20491
  • Roudaut G, Simatos D, Champion D, et al. Molecular mobility around the glass transition temperature: A mini review. Innov Food Sci Emerg Technol. 2004;5:127–134. doi:10.1016/j.ifset.2003.12.003
  • Colombo D, Montes H, Lequeux F, et al. Thermo-mechanical modeling of a filled elastomer based on the physics of mobility reduction. Mech Mater. 2020;143:103319. doi:10.1016/j.mechmat.2020.103319
  • Cao M-S, Song W-L, Hou Z-L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N Y. 2010;48(3):788–796. doi:10.1016/j.carbon.2009.10.028