578
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LattSAC: a software for the acoustic modelling of lattice sound absorbers

ORCID Icon, , ORCID Icon & ORCID Icon
Article: e2342432 | Received 17 Jan 2024, Accepted 03 Apr 2024, Published online: 18 Apr 2024

References

  • Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007;11(2):135–142. doi:10.1016/j.smrv.2006.09.001
  • Kumar S, Lee H. The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics. 2019;1(3):590–607. doi:10.3390/acoustics1030035
  • Jariwala HJ, Syed HS, Pandya MJ, et al. (2017). Noise pollution & human health: a review. In Noise and air pollution: challenges and opportunities.
  • Nelson DI, Nelson RY, Concha-Barrientos M, et al. The global burden of occupational noise-induced hearing loss. Am J Ind Med. 2005;48(6):446–458. doi:10.1002/ajim.20223
  • Cao L, Fu Q, Si Y, et al. Porous materials for sound absorption. Compos Commun. 2018;10:25–35. doi:10.1016/j.coco.2018.05.001
  • Berardi U, Iannace G. Predicting the sound absorption of natural materials: best-fit inverse laws for the acoustic impedance and the propagation constant. Appl Acoust. 2017;115:131–138. doi:10.1016/j.apacoust.2016.08.012
  • Taban E, Tajpoor A, Faridan M, et al. Acoustic absorption characterization and prediction of natural coir fibers. Acoust Australia. 2019;47(1):67–77. doi:10.1007/s40857-019-00151-8
  • Hou Y, Quan J, Thai BQ, et al. Ultralight biomass-derived carbon fibre aerogels for electromagnetic and acoustic noise mitigation. J Mater Chem A. 2022;10(42):22771–22780. doi:10.1039/D2TA06402B
  • Rapisarda M, Malfense Fierro GP, Meo M. Ultralight graphene oxide/polyvinyl alcohol aerogel for broadband and tuneable acoustic properties. Sci Rep. 2021;11(1):10572. doi:10.1038/s41598-021-90101-0
  • Li X, Yu X, Chua JW, et al. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption. Small. 2021;17(24):e2100336. doi:10.1002/smll.202100336
  • Rice HJ, Kennedy J, Göransson P, et al. Design of a Kelvin cell acoustic metamaterial. J Sound Vib. 2020;472:115167. doi:10.1016/j.jsv.2019.115167
  • Yang W, An J, Chua CK, et al. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual Phys Prototyp. 2020;15(2):242–249. doi:10.1080/17452759.2020.1740747
  • Li X, Yu X, Zhai W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels. Adv Mater. 2021;33(44):e2104552. doi:10.1002/adma.202104552
  • Liu J, Chen T, Zhang Y, et al. On sound insulation of pyramidal lattice sandwich structure. Compos Struct. 2019;208:385–394. doi:10.1016/j.compstruct.2018.10.013
  • Zhang Y, Zhu Z, Sheng Z, et al. Sound absorption properties of the metamaterial curved microperforated panel. Int J Mech Sci. 2024;268; doi:10.1016/j.ijmecsci.2024.109003
  • Gao N, Zhang Z, Deng J, et al. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol. 2022;7(6). doi:10.1002/admt.202100698
  • Pelat A, Gautier F, Conlon SC, et al. The acoustic black hole: A review of theory and applications. J Sound Vib. 2020;476; doi:10.1016/j.jsv.2020.115316
  • Yang X, Wen G, Jian L, et al. Archimedean spiral channel-based acoustic metasurfaces suppressing wide-band low-frequency noise at a deep subwavelength. Mater Des. 2024;238; doi:10.1016/j.matdes.2024.112703
  • Zangeneh-Nejad F, Fleury R. Active times for acoustic metamaterials. Rev Phys. 2019;4. doi:10.1016/j.revip.2019.100031
  • Schaedler TA, Carter WB. Architected cellular materials. Annu Rev Mater Res. 2016;46(1):187–210. doi:10.1146/annurev-matsci-070115-031624
  • Rashed MG, Ashraf M, Mines RAW, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater Des. 2016;95:518–533. doi:10.1016/j.matdes.2016.01.146
  • Ashby MF. The properties of foams and lattices. Philos Trans Royal Soc Lond A. 2006;364(1838):15–30. doi:10.1098/rsta.2005.1678
  • Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study. Addit Manuf. 2020;36:101564. doi:10.1016/j.addma.2020.101564
  • Boulvert J, Costa-Baptista J, Cavalieri T, et al. Acoustic modeling of micro-lattices obtained by additive manufacturing. Appl Acoust. 2020;164; doi:10.1016/j.apacoust.2020.107244
  • Li X, Yu X, Zhai W. Less is more: Hollow-Truss microlattice metamaterials with dual sound dissipation mechanisms and enhanced broadband sound absorption. Small. 2022;18(44):e2204145. doi:10.1002/smll.202204145
  • Delany ME, Bazley EN. Acoustical properties of fibrous absorbent materials. Appl Acoust. 1970;3(2):105–116. doi:10.1016/0003-682X(70)90031-9
  • Champoux Y, Allard J-F. Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys. 1991;70(4):1975–1979. doi:10.1063/1.349482
  • Johnson DL, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech. 2006;176(1). doi:10.1017/s0022112087000727
  • Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. higher frequency range. J Acoust Soc Am. 1956;28(2):179–191. doi:10.1121/1.1908241
  • Boulvert J, Cavalieri T, Costa-Baptista J, et al. Optimally graded porous material for broadband perfect absorption of sound. J Appl Phys. 2019;126(17). doi:10.1063/1.5119715
  • Komkin AI, Mironov MA, Bykov AI. Sound absorption by a Helmholtz resonator. Acoust Phys. 2017;63(4):385–392. doi:10.1134/S1063771017030071
  • Maa D-Y. Potential of microperforated panel absorber. J Acoust Soc Am. 1998;104(5):6.
  • Doutres O, Ouisse M, Atalla N, et al. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model. J Acoust Soc Am. 2014;136(4):1666–1681. doi:10.1121/1.4895695
  • Doutres O, Atalla N, Dong K. A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams. J Appl Phys. 2013;113(5). doi:10.1063/1.4789595
  • Yang L, Wei Chua J, Li X, et al. Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting. Chem Eng J. 2023;469; doi:10.1016/j.cej.2023.143896
  • Yu X, Lu Z, Zhai W. Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows. Acta Mater. 2021;206:116666. doi:10.1016/j.actamat.2021.116666
  • Zhai W, Yu X, Song X, et al. Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique. Mater Des. 2018;137:108–116. doi:10.1016/j.matdes.2017.10.016
  • Maskery I, Parry LA, Padrão D, et al. FLatt pack: a research-focussed lattice design program. Addit Manuf. 2022;49; doi:10.1016/j.addma.2021.102510
  • Raju SKK, Onkar PS. Lattice_Karak: Lattice structure generator for tissue engineering, lightweighting and heat exchanger applications. Softw Impacts. 2022;14; doi:10.1016/j.simpa.2022.100425
  • Al-Ketan O, Abu Al-Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun. 2020;3(6). doi:10.1002/mdp2.205
  • Bonatti C, Mohr D. Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures. Int J Plasticity. 2017;92:122–147. doi:10.1016/j.ijplas.2017.02.003
  • Dong L, Deshpande V, Wadley H. Mechanical response of Ti–6Al–4 V octet-truss lattice structures. Int J Solids Struct. 2015;60-61:107–124. doi:10.1016/j.ijsolstr.2015.02.020
  • Hanks B, Berthel J, Frecker M, et al. Mechanical properties of additively manufactured metal lattice structures: data review and design interface. Addit Manuf. 2020;35:101301. doi:10.1016/j.addma.2020.101301
  • Lai Z, Zhao M, Lim CH, et al. Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by digital light processing. Mater Sci Addit Manuf. 2022;1(4):1–12.
  • Jiménez N, Umnova O, Groby J-P. (2021). Acoustic waves in periodic structures, metamaterials, and porous media. Topics in Applied Physics.
  • Morse PM, Uno Ingard K. Theoretical acoustics, international series in pure and applied physics. New York: McGraw-Hill; 1968.
  • Verdiere K, Panneton R, Elkoun S, et al. Transfer matrix method applied to the parallel assembly of sound absorbing materials. J Acoust Soc Am. 2013;134(6):4648. doi:10.1121/1.4824839
  • Ridella S, Rovetta S, Zunino R. Circular backpropagation networks for classification. IEEE Trans Neural Netw. 1997;8(1):84–97. doi:10.1109/72.554194
  • Ding SQ, Xiang C. (2004). From multilayer perceptrons to radial basis function networks: a comparative study. Paper presented at the IEEE Conference on Cybernetics and Intelligent Systems, 2004.
  • Chua JW, Li X, Li T, et al. Customisable sound absorption properties of functionally graded metallic foams. J Mater Sci Technol. 2022;108:196–207. doi:10.1016/j.jmst.2021.07.056
  • ASTM. ASTM E1050-19, standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. West Conshohocken (PA): ASTM International; 2019.
  • Jaouen L, Gourdon E, Gle P. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements. J Acoust Soc Am. 2020;148(4):1998. doi:10.1121/10.0002162
  • Bies DA, Hansen CH, Howard CQ. Engineering noise control. 6th ed. Boca Raton: CRC Press; 2024.
  • Guo Y, Allam S, Åbom M. (2008). Micro-perforated plates for vehicle applications. Paper presented at the 37th International Congress and Exhibition on Noise Control Engineering, Shanghai, People’s Republic of China October, 2008.
  • Ingard U. On the theory and design of acoustic resonators. J Acoust Soc Am 1953;25(6):1037–1061. doi:10.1121/1.1907235
  • Li X, Yu X, Zhao M, et al. Multi-level bioinspired microlattice with broadband sound-absorption capabilities and deformation-tolerant compressive response. Adv Funct Mater. 2022;33(2):2210160. doi:10.1002/adfm.202210160
  • Okuzono T, Nitta T, Sakagami K. Note on microperforated panel model using equivalent-fluid-based absorption elements. Acoust Sci Technol. 2019;40(3):221–224. doi:10.1250/ast.40.221