1,004
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and experimental evaluation of surface enhancement methods for laser powder directed energy deposition microchannels

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2345389 | Received 06 Feb 2024, Accepted 08 Apr 2024, Published online: 08 May 2024

References

  • Gradl P, Tinker D, Park A, et al. Robust metal additive manufacturing process selection and development for aerospace components. J Mater Eng Performance, 2021;31:6013–6044. doi:10.1007/s11665-022-06850-0
  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. doi:10.1016/j.matdes.2021.110008
  • Yadroitsev I, Yadroitsava I, Du Plessis A, et al. Fundamentals of laser powder bed fusion of metals. 1st ed. Amsterdam: Elsevier; 2021. Available from: https://www.elsevier.com/books/fundamentals-of-laser-powder-bed-fusion-of-metals/yadroitsev/978-0-12-824090-8 (accessed September 24, 2021)
  • Niknam SA, Mortazavi M, Li D. Additively manufactured heat exchangers: a review on opportunities and challenges. Int J Adv Manuf Technol. 2021;112:601–618. doi:10.1007/s00170-020-06372-w
  • Gradl P, Cervone A, Colonna P. Integral channel nozzles and heat exchangers using additive manufacturing directed energy deposition NASA HR-1 Alloy, in: 73rd International Astronautical Congress, Paris, France, 2022: p. IAC-22,C4,2,x73690.
  • Kaur I, Singh P. State-of-the-art in heat exchanger additive manufacturing. Int J. Heat Mass Transf. 2021;178:121600. doi:10.1016/j.ijheatmasstransfer.2021.121600
  • McDonough JR. A perspective on the current and future roles of additive manufacturing in process engineering, with an emphasis on heat transfer. Therm Sci Eng Prog. 2020;19:100594. doi:10.1016/j.tsep.2020.100594
  • Favero G, Bonesso M, Rebesan P, et al. Additive manufacturing for thermal management applications: from experimental results to numerical modeling. Int J Thermofluids. 2021;10:100091. doi:10.1016/j.ijft.2021.100091
  • da Silva RPP, Mortean MVV, de Paiva KV, et al. Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing. Appl Therm Eng. 2021;193:116973. doi:10.1016/j.applthermaleng.2021.116973
  • Arman S, Lazoglu I. A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. Springer London; 2023. doi:10.1007/s00170-023-11593-w
  • Martina F, Mehrpouya M, Gisario A, et al. Metal additive manufacturing in the commercial aviation industry: a review. J Manuf Syst. 2019;53:124–149. doi:10.1016/j.jmsy.2019.08.005
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Marshall G, Thompson S, Daniewicz S, et al. Estimating the effects of part size on direct laser deposition parameter selection via a thermal resistance network approach, solid free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf. (2016) 350–364. http://utw10945.utweb.utexas.edu/sites/default/files/2016/024-Marshall.pdf.
  • Berez J, Praniewicz M, Saldana C. Assessing laser powder bed fusion system geometric errors through artifact-based methods. Procedia Manuf. 2021;53:395–406. doi:10.1016/j.promfg.2021.06.042
  • Fotovvati B, Asadi E. Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4 V ELI parts. Int J Adv Manuf Technol. 2019;104:2951–2959. doi:10.1007/s00170-019-04184-1
  • Gradl PR, Tinker DC, Ivester J, et al. Geometric feature reproducibility for Laser Powder Bed Fusion (L-PBF) additive manufacturing with Inconel 718. Addit Manuf. 2021;47:102305. doi:10.1016/j.addma.2021.102305
  • Çalışkan CI, Özer G, Coşkun M, et al. Investigation of direct metal laser sintering downskin parameters ‘ sagging effect on microchannels. Int J Adv Manuf Technol. 2021;114:2567–2575. doi:10.1007/s00170-021-07057-8
  • Snyder JC, Thole KA. Effect of additive manufacturing process parameters on turbine cooling. J. Turbomach. 2020;142:051007. doi:10.1115/1.4046459
  • Careri F, Khan RHU, Todd C, et al. Additive manufacturing of heat exchangers in aerospace applications : A. Appl Therm Eng. 2023;235:121387. doi:10.1016/j.applthermaleng.2023.121387
  • Kirsch KL, Thole KA. Heat transfer and pressure loss measurements in additively manufactured wavy microchannels. J Turbomach. 2016;139: 011007: 16-1155. doi:10.1115/1.4034342
  • Ferster KK, Kirsch KL, Thole KA. Effects of geometry, spacing, and number of pin fins in additively manufactured microchannel pin fin arrays. J Turbomach. 2017;140: 011007: 17-1138. doi:10.1115/1.4038179
  • Alsulami M, Mortazavi M, Niknam SA, et al. Design complexity and performance analysis in additively manufactured heat exchangers. Int J Adv Manuf Technol. 2020;110:865–873. doi:10.1007/s00170-020-05898-3
  • Klein E, Ling J, Aute V, et al. A review of recent advances in additively manufactured heat exchangers. Int Refrig Air Cond Conf. 2018;2478:1–10. https://docs.lib.purdue.edu/iracc%0Ahttps://docs.lib.purdue.edu/iracc/1983.
  • Kaur I, Singh P. Critical evaluation of additively manufactured metal lattices for viability in advanced heat exchangers. Int J Heat Mass Transf. 2021;168:120858. doi:10.1016/j.ijheatmasstransfer.2020.120858
  • Zhang C, Wang S, Li J, et al. Additive manufacturing of products with functional fluid channels: a review. Addit Manuf. 2020;36:101490. doi:10.1016/j.addma.2020.101490
  • Vafadar A, Guzzomi F, Hayward K. Experimental investigation and comparison of the thermal performance of additively and conventionally manufactured heat exchangers. Metals (Basel). 2021;11:574. doi:10.3390/met11040574
  • Kerstens F, Cervone A, Gradl P. End to end process evaluation for additively manufactured liquid rocket engine thrust chambers. Acta Astronaut. 2021;182:454–465. doi:10.1016/j.actaastro.2021.02.034
  • Gradl P, Mireles OR, Katsarelis C, et al. Advancement of extreme environment additively manufactured alloys for next generation space propulsion applications. Acta Astronaut. 2023;211:483–497. doi:10.1016/j.actaastro.2023.06.035
  • Li SH, Kumar P, Chandra S, et al. Directed energy deposition of metals: processing, microstructures, and mechanical properties. Int Mater Rev. 2022;67:605–647. doi:10.1080/09506608.2022.2097411
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/J.MATTOD.2021.03.020
  • Gradl PR, Teasley TW, Protz CS, et al. Process development and hot-fire testing of additively manufactured NASA HR-1 for Liquid Rocket Engine Applications, in: AIAA Propuls. Energy. 2021;2021:1–23. doi:10.2514/6.2021-3236
  • Shamsaei N, Yadollahi A, Bian L, et al. An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control. Addit Manuf. 2015;8:12–35. doi:10.1016/j.addma.2015.07.002
  • Soltani-tehrani A, Chen P, Katsarelis C, et al. Thin-walled structures mechanical properties of laser powder directed energy deposited NASA HR-1 superalloy : effects of powder reuse and part orientation. Thin-Walled Struct. 2023;185:110636. doi:10.1016/j.tws.2023.110636
  • Melia MA, Duran JG, Koepke JR, et al. How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel. Npj Mater Degrad. 2020;4:1–11. doi:10.1038/s41529-020-00126-5
  • Boban J, Ahmed A. Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J Mater Process Technol. 2021;291:117013. doi:10.1016/j.jmatprotec.2020.117013
  • Ye C, Zhang C, Zhao J, et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review. J Mater Eng Perform. 2021;30:6407–6425. doi:10.1007/s11665-021-06021-7
  • [37] H. Fayazfar, J. Sharifi, M.K. Keshavarz, M. Ansari, An overview of surface roughness enhancement of additively manufactured metal parts: a path towards removing the post-print bottleneck for complex geometries, Springer London, 2023. doi:10.1007/s00170-023-10814-6
  • Kumbhar NN, Mulay AV. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng Ser C. 2016;99:481–487. doi:10.1007/s40032-016-0340-z
  • Hashmi AW, Mali HS, Meena A, et al. A comprehensive review on surface post-treatments for freeform surfaces of bio-implants. J Mater Res Technol. 2023;23:4866–4908. doi:10.1016/j.jmrt.2023.02.007
  • Boban J, Ahmed A, Jithinraj EK, et al. Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects. Springer London; 2022. doi:10.1007/s00170-022-09382-y
  • Hashmi AW, Mali HS, Meena A, et al. Surface characteristics improvement methods for metal additively manufactured parts: a review. Adv Mater Process Technol. 2022;00:1–40. doi:10.1080/2374068X.2022.2077535
  • Maleki E, Bagherifard S, Bandini M, et al. Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf. 2021;37:101619. doi:10.1016/j.addma.2020.101619
  • Lee JY, Nagalingam AP, Yeo SH. A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual Phys Prototyp. 2020;0:1–29. doi:10.1080/17452759.2020.1830346
  • Manco E, Cozzolino E, Astarita A. Laser polishing of additively manufactured metal parts: a review. Surf Eng. 2022;38:217–233. doi:10.1080/02670844.2022.2072080
  • De Oliveira D, Gomes MC, Dos Santos AG, et al. Abrasive and non-conventional post-processing techniques to improve surface finish of additively manufactured metals: a review. Prog Addit Manuf. 2023;8:223–240. doi:10.1007/s40964-022-00325-3
  • Paul RG, Mireles OR, Protz CS, et al. Metal additive manufacturing for propulsion applications. 1st ed. Reston (VA): American Institute of Aeronautics and Astronautics, Inc.; 2022. doi:10.2514/4.106279
  • Zhang J, Lee YJ, Wang H. A Brief review on the enhancement of surface finish for metal additive manufacturing. J Miner Met Mater Eng. 2021;7:1–14.
  • Syrlybayev D, Seisekulova A, Talamona D, et al. The post-processing of additive manufactured polymeric and metallic parts. J Manuf Mater Process. 2022;6; doi:10.3390/jmmp6050116
  • Yazdanparast S, Raikar S, Heilig M, et al. Iodine-based sensitization of copper alloys to enable self-terminating etching for support removal and surface improvements of additively manufactured components, 3D Print. Addit Manuf. 2023;10:619–630. doi:10.1089/3dp.2021.0242
  • Nagalingam AP, Yeo SH. Surface finishing of additively manufactured Inconel 625 complex internal channels: a case study using a multi-jet hydrodynamic approach. Addit Manuf. 2020;36:101428. doi:10.1016/j.addma.2020.101428
  • Nagalingam AP, Toh BL, Yeo SH. Surface polishing of laser powder bed fused Inconel 625 surfaces using multi-jet hydrodynamic cavitation abrasive finishing: an emerging class of cleaner surface enhancement process. Int J Precis Eng Manuf - Green Technol. 2023;10:637–657. doi:10.1007/s40684-022-00471-7
  • Lesyk D, Dzhemelinskyi V, Mordyuk B, et al. Surface polishing of laser powder bed fused superalloy components by magnetic post-treatment. Proc. 2020 IEEE 10th Int. Conf. “Nanomaterials Appl. Prop. N; 2020(2020):10–13. doi:10.1109/NAP51477.2020.9309600
  • Guo J, Au KH, Liu K, et al. A novel vibration-assisted magnetic abrasive polishing method for complex internal surface finishing. Proc. 17th Int. Conf. Eur. Soc. Precis. Eng. Nanotechnology, EUSPEN 2017. 2017: 161–162.
  • Basha MM, Basha SM, Jain VK, et al. State of the art on chemical and electrochemical based finishing processes for additive manufactured features. Addit Manuf. 2022;58:103028. doi:10.1016/j.addma.2022.103028
  • Favero G, Berti G, Bonesso M, et al. Experimental and numerical analyses of fluid flow inside additively manufactured and smoothed cooling channels. Int Commun Heat Mass Transf. 2022;135:106128. doi:10.1016/j.icheatmasstransfer.2022.106128
  • Tyagi P, Goulet T, Riso C, et al. Reducing surface roughness by chemical polishing of additively manufactured 3D printed 316 stainless steel components. Int J Adv Manuf Technol. 2018;100:2895–2900. doi:10.1007/s00170-018-2890-0
  • Mohammadian N, Turenne S, Brailovski V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol. 2018;252:728–738. doi:10.1016/j.jmatprotec.2017.10.020
  • Zhu Y, Zhou L, Wang S, et al. On friction factor of fluid channels fabricated using selective laser melting. Virtual Phys Prototyp. 2020;15:496–509. doi:10.1080/17452759.2020.1823093
  • Zhou L, Zhu Y, Liu H, et al. A comprehensive model to predict friction factors of fluid channels fabricated using laser powder bed fusion additive manufacturing. Addit Manuf. 2021;47:102212. doi:10.1016/j.addma.2021.102212
  • Çalışkan Cİ, Coşkun M, Özer G, et al. Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering. Int J Adv Manuf Technol. 2021;117:3805–3817. doi:10.1007/s00170-021-07928-0
  • B.K.J. Evangelista, Laser powder bed fusion-induced surface roughness and effects on thermal fluid performance for additively manufactured metals in liquid rocket components, California State University, 2022.
  • Seltzman AH, Wukitch SJ. Surface roughness and finishing techniques in selective laser melted GRCop-84 copper for an additive manufactured lower hybrid current drive launcher. Fusion Eng. Des. 2020;160:111801. doi:10.1016/j.fusengdes.2020.111801
  • W. Demisse, J. Xu, L. Rice, P. Tyagi, Review of internal and external surface finishing technologies for additively manufactured metallic alloys components and new frontiers, Prog Addit Manuf. 2023;8:1433–1453. doi:10.1007/s40964-023-00412-z
  • Min Z, Wu Y, Yang K, et al. Dimensional characterizations using scanning electron microscope and surface improvement with electrochemical polishing of additively manufactured microchannels. J Eng Gas Turbines Power. 2021;143:1–12. doi:10.1115/1.4049908
  • Jiang D, Tian Y, Zhu Y, et al. Investigation of surface roughness post-processing of additively manufactured nickel-based superalloy Hastelloy X using electropolishing. Surf Coatings Technol. 2022;441:128529. doi:10.1016/j.surfcoat.2022.128529
  • An L, Wang D, Zhu D. Combined electrochemical and mechanical polishing of interior channels in parts made by additive manufacturing. Addit Manuf. 2022;51:102638. doi:10.1016/j.addma.2022.102638
  • Chaghazardi Z, Wüthrich R. Review—electropolishing of additive manufactured metal parts. J Electrochem Soc. 2022;169:043510. doi:10.1149/1945-7111/ac6450
  • Ferchow J, Baumgartner H, Klahn C, et al. Model of surface roughness and material removal using abrasive flow machining of selective laser melted channels. Rapid Prototyp J. 2020;26:1165–1176. doi:10.1108/RPJ-09-2019-0241
  • M. Buchholz, S. Gruber, A. Selbmann, A. Marquardt, L. Meier, M. Müller, L. Seifert, C. Leyens, M. Tajmar, C. Bach, Flow rate improvements in additively manufactured flow channels suitable for rocket engine application. CEAS Sp J. 2022;15:715–728. doi:10.1007/s12567-022-00476-7
  • Han S, Salvatore F, Rech J, et al. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng. 2020;64:20–33. doi:10.1016/j.precisioneng.2020.03.006
  • Duval-Chaneac MS, Han S, Claudin C, et al. Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM). Precis Eng. 2018;54:1–6. doi:10.1016/j.precisioneng.2018.03.006
  • Soltani-tehrani A, Chen P, Katsarelis C, et al. Laser powder directed energy deposition (LP-DED) NASA HR-1 alloy : laser power and heat treatment effects on microstructure and mechanical properties. Addit Manuf Lett. 2022;3:100097. doi:10.1016/j.addlet.2022.100097
  • Gradl P, Cervone A, Colonna P. Influence of build angles on thin-wall geometry and surface texture in laser powder directed energy deposition. Mater Des. 2023;234:112352.doi:10.1016/j.matdes.2023.112352
  • Gradl PR, Cervone A, Gill E. Surface texture characterization for thin-wall NASA HR-1 Fe – Ni – Cr alloy using laser powder directed energy deposition (LP-DED). Adv. Ind. Manuf. Eng. 2022;4:100084. doi:10.1016/j.aime.2022.100084
  • Chen PS, Katsarelis CC, Medders WM, et al. Development of directed energy deposited NASA HR-1 to optimize properties for Liquid Rocket Engine Applications, NASA Tech. Memo. NASA/TM–20; 2023.
  • Obilanade D, Dordlofva C, Törlind P. Surface roughness considerations in design for additive manufacturing - a literature review. Proc Des Soc. 2021;1:2841–2850. doi:10.1017/pds.2021.545
  • Wahab Hashmi A, Singh Mali H, Meena A. Improving the surface characteristics of additively manufactured parts: a review. Mater Today Proc. 2021;81:723–738. doi:10.1016/j.matpr.2021.04.223
  • M. Rauch, J. Hascoet, Improving additive manufactured surfaces properties with post processing techniques. 2021.
  • Tan KL, Yeo S-HH, Ong CH. Nontraditional finishing processes for internal surfaces and passages: a review. Proc Inst Mech Eng Part B J Eng Manuf. 2016;231:2302–2316. doi:10.1177/0954405415626087
  • Yadav SK, Singh MK, Singh BR. Effect of unconventional machining on surface roughness of metal: aluminum and brass- a case study of abrasive flow. SAMRIDDHI A J Phys Sci Eng Technol. 2015;2:53–60. doi:10.18090/samriddhi.v2i1.1598
  • Diaz A. Surface texture characterization and optimization of metal additive manufacturing-produced components for aerospace applications. Addi Manuf Aerosp Ind. 2019;16:341–374. doi:10.1016/B978-0-12-814062-8.00018-2
  • Tyagi P, Goulet T, Riso C, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf. 2019;25:32–38. doi:10.1016/j.addma.2018.11.001
  • Kulkarni M, Gao F, Liang H. Chemical-mechanical polishing (CMP): a controlled tribocorrosion process. Tribocorrosion Passiv Met Coatings. 2011;18:498–518e. doi:10.1533/9780857093738.3.498
  • Kim US, Park JW. High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. Int J Precis Eng Manuf - Green Technol. 2019;6:11–21. doi:10.1007/s40684-019-00019-2
  • Sergiy P, Popov V, Shypul O, et al. Advanced thermal energy method for finishing precision parts. In: K Gupta, A Pramanik, editor. Advanced Machining Finished. Amsterdam: Elsevier; 2021. p. 527–575. doi:10.1016/C2018-0-00908-1
  • Fritz A, Sekol L, Koroskenyi J, et al. Experimental analysis of thermal energy deburring process by design of experiment, in: American Society of Mechanical Engineers (ASME) (Ed.), ASME 2012 Int. Mech. Eng. Congr. Expo., Houston, TX USA, 2012: pp. 2035–2041. doi:10.1115/IMECE2012-88411
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. doi:10.1038/nmeth.2089
  • Marinello F, Pezzuolo A. Application of ISO 25178 standard for multiscale 3D parametric assessment of surface topographies. IOP Conf Ser Earth Environ Sci. 2019;275:012011. doi:10.1088/1755-1315/275/1/012011
  • International Organization for Standardization. ISO 25178-2 Geometrical product specifications (GPS) — surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, Geneva, 2021. https://www.iso.org/standard/74591.html.
  • du Plessis A, Yadroitsev I, Yadroitsava I, et al. Le Roux, X-Ray microcomputed tomography in additive manufacturing: a review of the current technology and applications, 3D print. Addit Manuf. 2018;5:227–247. doi:10.1089/3DP.2018.0060
  • Wang X, Li S, Fu Y, et al. Finishing of additively manufactured metal parts by abrasive flow machining, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF; 2016. (2016) 2470–2472.
  • Maurer O, Herter F, Bähre D. The impact of manufacturing parameters on corrosion resistance of additively manufactured AlSi10Mg-samples: a design of experiments approach. Manuf. Lett. 2022;34:29–33. doi:10.1016/j.mfglet.2022.08.006
  • Franco LA, Sinatora A. 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precis. Eng. 2015;40:106–111. doi:10.1016/j.precisioneng.2014.10.011