427
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties enhancement of 3D-printed HA-PLA composites using ultrasonic vibration assistance

, , ORCID Icon, , &
Article: e2346271 | Received 14 Feb 2024, Accepted 17 Apr 2024, Published online: 02 May 2024

References

  • Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82–91. doi:10.1016/j.bioactmat.2020.01.004.
  • Collins MN, Ren G, Young K, et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater. 2021;31(21). doi:10.1002/adfm.202010609.
  • Wei S, Ma J-X, Xu L, et al. Biodegradable materials for bone defect repair. Mil Med Res. 2020;7(1). doi:10.1186/s40779-020-00280-6.
  • Wubneh A, Tsekoura EK, Ayranci C, et al. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1–30. doi:10.1016/j.actbio.2018.09.031.
  • Feng P, Jia J, Liu M, et al. Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration. Mater Des. 2021;210:110066. doi:10.1016/j.matdes.2021.110066.
  • Alonso-Fernández I, Haugen HJ, López-Peña M, et al. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: a systematic review. Acta Biomater. 2023;168:1–21. doi:10.1016/j.actbio.2023.07.013.
  • Soleymani S, Naghib S M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon. 2023;9(9):e19363. doi:10.1016/j.heliyon.2023.e19363.
  • Chen X, Gao C, Jiang J, et al. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater. 2019;14(6). doi:10.1088/1748-605X/ab388d.
  • Wu D, Spanou A, Diez-Escudero A, et al. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater. 2020;103:103608. doi:10.1016/j.jmbbm.2019.103608.
  • Xia Y, Xu W, Zhang H, et al. 3D-printing polylactic acid/hydroxyapatite fracture internal fixation plates for bone repair. J Appl Polym Sci. 2022;139(46). doi:10.1002/app.53147.
  • Cestari F, Petretta M, Yang Y, et al. 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustain MaterTechnol. 2021;29:e00318. doi:10.1016/j.susmat.2021.e00318.
  • Cho YS, Quan M, Lee S-H, et al. Assessment of osteogenesis for 3D-printed polycaprolactone/hydroxyapatite composite scaffold with enhanced exposure of hydroxyapatite using rat calvarial defect model. Compos Sci Technol. 2019;184:107844. doi:10.1016/j.compscitech.2019.107844.
  • Jiao Z, Luo B, Xiang S, et al. 3D printing of HA / PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res. 2019;2(4):196–202. doi:10.1016/j.aiepr.2019.09.003.
  • Zheng J, Zhao H, Ouyang Z, et al. Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos Part B. 2022;232:109508. doi:10.1016/j.compositesb.2021.109508
  • Manzoor F, Golbang A, Jindal S, et al. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential. J Mech Behav Biomed Mater. 2021;121:104601. doi:10.1016/j.jmbbm.2021.104601.
  • Yan D, Zeng B, Han Y, et al. Preparation and laser powder bed fusion of composite microspheres consisting of poly(lactic acid) and nano-hydroxyapatite. Addit Manuf. 2020;34:101305. doi:10.1016/j.addma.2020.101305.
  • Nouri A, Rohani Shirvan A, Li Y, et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. J Mater Sci Technol. 2021;94:196–215. doi:10.1016/j.jmst.2021.03.058.
  • Zeynivandnejad M, Moradi Mand Sadeghi A. Mechanical, physical, and degradation properties of 3D printed PLA + Mg composites. J Manuf Processes. 2023;101:234–244. doi:10.1016/j.jmapro.2023.05.099.
  • Wang W, Zhang B, Zhao L, et al. Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application. Nanotechnol Rev. 2021;10(1):1359–1373. doi:10.1515/ntrev-2021-0083.
  • Zhang B, Wang L, Song P, et al. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater Des. 2021;201:109490. doi:10.1016/j.matdes.2021.109490.
  • Wang W, Zhang B, Li M, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B. 2021;224(1):109192. doi:10.1016/j.compositesb.2021.109192.
  • Zheng J, Zhao H, Dong E, et al. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021;128:112333. doi:10.1016/j.msec.2021.112333.
  • Aihemaiti P, Jiang H, Aiyiti W, et al. Optimization of 3D printing parameters of biodegradable polylactic acid/hydroxyapatite composite bone plates. Int J Bioprint. 2022;8(1):153–166. doi:10.18063/ijb.v8i1.490.
  • Zheng J, Kang J, Sun C, et al. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. J Mech Behav Biomed Mater. 2021;118:104475. doi:10.1016/j.jmbbm.2021.104475.
  • Tran TQ, Ng FL, Kai JTY, et al. Tensile strength enhancement of fused filament fabrication printed parts: a review of process improvement approaches and respective impact. Addit Manuf. 2022;54:102724. doi:10.1016/j.addma.2022.102724.
  • Li J, Luand XL, Zheng YF. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl Surf Sci. 2008;255(2):494–497. doi:10.1016/j.apsusc.2008.06.067.
  • Sharifabad SS, Derazkola HA, Esfandyar M, et al. Mechanical properties of HA@Ag/PLA nanocomposite structures prepared by extrusion-based additive manufacturing. J Mech Behav Biomed Mater. 2021;118:104455. doi:10.1016/j.jmbbm.2021.104455.
  • Bhandari S, Lopez-Anido RA, Gardner DJ. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf. 2019;30:100922. doi:10.1016/j.addma.2019.100922.
  • Li J, Fu Y, Pi W, et al. Improving mechanical performances at room and elevated temperatures of 3D printed polyether-ether-ketone composites by combining optimal short carbon fiber content and annealing treatment. Composites Part B. 2023;267:111067. doi:10.1016/j.compositesb.2023.111067.
  • Valvez S, Reis PNB, Ferreira JAM. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J Mater Res Technol. 2023;23:2101–2115. doi:10.1016/j.jmrt.2023.01.097.
  • Chen L, , Zhang X. Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl Surf Sci. 2019;492:765–775. doi:10.1016/j.apsusc.2019.06.252.
  • Mushtaq RT, Wang Y, Khan AM, et al. A post-processing laser polishing method to improve process performance of 3D printed new Industrial Nylon-6 polymer. J Manuf Processes. 2023;101:546–560. doi:10.1016/j.jmapro.2023.06.019.
  • Zhang X, Chen L. Effects of laser scanning speed on surface roughness and mechanical properties of aluminum/Polylactic Acid (Al/PLA) composites parts fabricated by fused deposition modeling. Polym Test. 2020;91:106785. doi:10.1016/j.polymertesting.2020.106785.
  • Khosravani MR, Ayatollahi MR, Reinicke T. Effects of post-processing techniques on the mechanical characterization of additively manufactured parts. J Manuf Processes. 2023;107:98–114. doi:10.1016/j.jmapro.2023.10.018.
  • Ravoori D, Salvi S, Prajapati H, et al. Void reduction in fused filament fabrication (FFF) through in situ nozzle-integrated compression rolling of deposited filaments. Virtual Phys Prototyping. 2021;146–159. doi:10.1080/17452759.2021.1890986.
  • Ravi AK, Deshpande A, Hsu KH. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Processes. 2016;24:179–185. doi:10.1016/j.jmapro.2016.08.007.
  • Lee JE, Park SJ, Son Y, et al. Mechanical reinforcement of additive-manufactured constructs using in situ auxiliary heating process. Addit Manuf. 2021;43:101995. doi:10.1016/j.addma.2021.101995.
  • Nycz A, Kishore V, Lindahl J, et al. Controlling substrate temperature with infrared heating to improve mechanical properties of large-scale printed parts. Addit Manuf. 2020;33:101068. doi:10.1016/j.addma.2020.101068.
  • Prajapati H, Salvi SS, Ravoori D, et al. Improved print quality in fused filament fabrication through localized dispensing of hot air around the deposited filament. Addit Manuf. 2021;40:101917 doi:10.1016/j.addma.2021.101917.
  • Ravoori D, Prajapati H, Talluru V, et al. Nozzle-integrated pre-deposition and post-deposition heating of previously deposited layers in polymer extrusion based additive manufacturing. Addit Manuf. 2019;28:719–726. doi:10.1016/j.addma.2019.06.006.
  • Patel P, Rane R, Mrinal M, et al. Characterization of the effect of in-process annealing using a novel print head assembly on the ultimate tensile strength & toughness of Fused Filament Fabrication (FFF) parts. Virtual Phys Prototyping. 2022;17(4):989–1005. doi:10.1080/17452759.2022.2095288.
  • Charles B, Sweeney BAL, Pospisil MJ. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Appl Sci Eng. 2017;3. doi:10.1126/sciadv.1700262.
  • Li G, Zhao J, Jiang J, et al. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing. Int J Adv Manuf Technol. 2018;96(5-8):2747–2755. doi:10.1007/s00170-018-1789-0.
  • Li G, Zhao J, Wu W, et al. Effect of ultrasonic vibration on mechanical properties of 3D printing Non-crystalline and semi-crystalline polymers. Materials (Basel). 2018;11(5):826. doi:10.3390/ma11050826.
  • Wu W, Jiang J, Jiang H, et al. Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Mater Lett. 2018;220:317–320. doi:10.1016/j.matlet.2018.03.048.
  • Wu W, Li J, Jiang J, et al. Influence mechanism of ultrasonic vibration substrate on strengthening the mechanical properties of fused deposition modeling. Polymers (Basel). 2022;14(5). doi:10.3390/polym14050904.
  • Maidin S, Rajendran TK, Hayati NMN, et al. Effect of ultrasonic vibration on the mechanical properties of 3D printed acrylonitrile butadiene styrene and polylactic acid samples. Heliyon. 2023;9(6):e17053. doi:10.1016/j.heliyon.2023.e17053.
  • Tofangchi A, Han P, Izquierdo J, et al. Effect of ultrasonic vibration on interlayer adhesion in fused filament fabrication 3D printed ABS. Polymers (Basel). 2019;11(2):315. doi:10.3390/polym11020315.
  • Zhang R, Yu L, Chen K, et al. Amelioration of interfacial properties for CGF/PA6 composites fabricated by ultrasound-assisted FDM 3D printing. Compos Commun. 2023;39:101551. doi:10.1016/j.coco.2023.101551.
  • Amnael Orozco-Díaz C, Moorehead R, Reilly GC, et al. Characterization of a composite polylactic acid-hydroxyapatite 3D-printing filament for bone-regeneration. Biomed Phys Eng Express. 2020;6(2):025007. doi:10.1088/2057-1976/ab73f8.
  • Huang J, Xiong J, Liu J, et al. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold. Bio-Med Mater Eng. 2015;26(s1):S197–S205. doi:10.3233/BME-151306.
  • Singh J, Goyal Kand K, Kumar R. Effect of filling percentage and raster style on tensile behavior of FDM produced PLA parts at different build orientation. Mater Today Proc. 2022;63:433–439. doi:10.1016/j.matpr.2022.03.444.
  • Akindoyo JO, Beg MDH, Ghazali S, et al. Impact modified PLA-hydroxyapatite composites – Thermo-mechanical properties. Compos Part A. 2018;107:326–333. doi:10.1016/j.compositesa.2018.01.017.
  • Akindoyo JO, Beg MDH, Ghazali S, et al. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos Part A. 2017;103:96–105. doi:10.1016/j.compositesa.2017.09.013.
  • Ferri JM, Jordá J, Montanes N, et al. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. J Thermoplast Compos Mater. 2017;31(7):865–881. doi:10.1177/0892705717729014.
  • Esposito Corcione C, Gervaso F, Scalera F, et al. The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl Polym Sci. 2016;134(13). doi:10.1002/app.44656.
  • Premphet P, Leksakul K, Boonyawan D, et al. Process parameters optimization and mechanical properties of 3D PLA/HA printing scaffold. Mater Today Proc. 2023. doi:10.1016/j.matpr.2023.04.124.