637
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructural evolution modelling and low-stress fatigue performance of bimodal-structured Al-Mg-Sc-Zr alloy produced by laser powder bed fusion additive manufacturing

, &
Article: e2346287 | Received 03 Jan 2024, Accepted 17 Apr 2024, Published online: 30 Apr 2024

References

  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209. doi:10.1016/j.matdes.2021.110008
  • El Kashouty MF, Rennie AEW, Ghazy M, et al. Selective laser melting for improving quality characteristics of a prism shaped topology injection mould tool insert for the automotive industry. Proc Inst Mech Eng C-J Mech Eng Sci. 2021;235(23):7021–7032. doi:10.1177/0954406221989382
  • Rahim AHA, Abidin ZZ, Yunus N. The digitalisation in cobalt-chromium framework fabrication. Surface roughness analysis: a pilot study. Sains Malaysiana. 2021;50(10):3059–3065. doi:10.17576/jsm-2021-5010-18
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. SCIENCE. 2021;372(6545):932–93+. doi:10.1126/science.abg1487
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–36+. doi:10.1038/nature23894
  • Zhang D, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576(7785):91–9+. doi:10.1038/s41586-019-1783-1
  • Li G, Brodu E, Soete J, et al. Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys. Addit Manuf. 2021a;47:102210. doi:10.1016/j.addma.2021.102210
  • Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit Manuf. 2021;41:101966. doi:10.1016/j.addma.2021.101966
  • Uddin SZ, Murr LE, Terrazas CA, et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf. 2018;22:405–415. doi:10.1016/j.addma.2018.05.047
  • Li G, Jadhav SD, Martín A, et al. Investigation of solidification and precipitation behavior of Si-modified 7075 aluminum alloy fabricated by laser-based powder bed fusion. Metall Mater Trans A. 2021b;52(1):194–210. doi:10.1007/s11661-020-06073-9
  • Spierings AB, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater Des. 2017;115:52–63. doi:10.1016/j.matdes.2016.11.040
  • Wang Z, Lin X, Wang J, et al. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit Manuf. 2022;59; doi:10.1016/j.addma.2022.103093
  • Cordova L, Bor T, de Smit M, et al. Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF). Addit Manuf. 2020;36:101625. doi:10.1016/j.addma.2020.101625
  • Guo Y, Liao H, Chang C, et al. Effects of solute atoms re-dissolution on precipitation behavior and mechanical properties of selective laser melted Al-Mg-Sc-Zr alloys. Mater Sci Eng Struct Mater Prop Microst Proces. 2022a;854. doi:10.1016/j.msea.2022.143870
  • Avery DZ, Phillips BJ, Mason CJT, et al. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu alloy. Metall Mater Trans A. 2020;51(6):2778–2795. doi:10.1007/s11661-020-05746-9
  • Nezhadfar PD, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: effects of build orientation on microstructure, porosity, and fatigue behavior. Additive Manufacturing. 2021;47:102292. doi:10.1016/j.addma.2021.102292
  • Piette TD, Warren RJ, Spangenberger AG, et al. Microstructure evolution, fatigue crack growth, and ultrasonic fatigue in As-fabricated laser powder bed and conventionally cast Al–10Si-0.4Mg: a mechanistic understanding and integrated flaw-sensitive fatigue design methods. Mater Sci Eng A. 2021;825:141892. doi:10.1016/j.msea.2021.141892
  • Zhang H, Li C, Song W, et al. Fatigue life evaluation and cellular substructure role of laser powder bed fused 304L steel based on dissipative deformation mechanisms. Addit Manuf. 2023;64:103430. doi:10.1016/j.addma.2023.103430
  • Zhang H, Xu M, Kumar P, et al. Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure. Virtual Phys Prototyp. 2021;16(2):125–145. doi:10.1080/17452759.2021.1881869
  • Zhou RH, Liu HS, Wang HF. Modeling and simulation of metal selective laser melting process: a critical review. Int J Adv Manuf Technol. 2022;121(9-10):5693–5706. doi:10.1007/s00170-022-09721-z
  • Lu L-X, Sridhar N, Zhang Y-W. Phase field simulation of powder bed-based additive manufacturing. Acta Mater. 2018;144:801–809. doi:10.1016/j.actamat.2017.11.033
  • Rodgers TM, Madison JD, Tikare V. Simulation of metal additive manufacturing microstructures using kinetic monte carlo. Comput Mater Sci. 2017;135:78–89. doi:10.1016/j.commatsci.2017.03.053
  • Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci. 2018;141:207–220. doi:10.1016/j.commatsci.2017.09.018
  • Liu J, To AC. Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting. Addit Manuf. 2017;16:58–64. doi:10.1016/j.addma.2017.05.005
  • Rappaz M, Gandin CA. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater. 1993;41(2):345–360. doi:10.1016/0956-7151(93)90065-Z
  • Mohebbi MS, Ploshikhin V. Implementation of nucleation in cellular automaton simulation of microstructural evolution during additive manufacturing of Al alloys. Addit Manuf. 2020;36:101726. doi:10.1016/j.addma.2020.101726
  • Kergaßner A, Mergheim J, Steinmann P. Modeling of additively manufactured materials using gradient-enhanced crystal plasticity. Comput Math Appl. 2019;78(7):2338–2350. doi:10.1016/j.camwa.2018.05.016
  • Pei Y, Hao Y, Zhao J, et al. Texture evolution prediction of 2219 aluminum alloy sheet under hydro-bulging using cross-scale numerical modeling. J Mater Sci Technol. 2023;149:190–204. doi:10.1016/j.jmst.2022.11.037
  • Chakrabarty A, Chakraborty P, Jain R, et al. Influence of scanning and building strategies on the deformation behavior of additively manufactured AlSi10Mg: CPFEM and finite element studies. Met Mater Int. 2023. doi:10.1007/s12540-023-01418-6
  • Shiraiwa T, Briffod F, Enoki M. Prediction of fatigue crack initiation of 7075 aluminum alloy by crystal plasticity simulation. Materials (Basel). 2023;16(4). doi:10.3390/ma16041595
  • Gandin CA, Rappaz M, Tintillier R. Three-dimensional probabilistic simulation of solidification grain structures: application to superalloy precision castings. Metall Trans A. 1993;24(2):467–479. doi:10.1007/BF02657334
  • Huang Y. (1991). A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program.
  • Li R, Chen H, Zhu H, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting. Mater Des. 2019;168:107668. doi:10.1016/j.matdes.2019.107668
  • Guo Y, Liao H, Chang C, et al. Effects of solute atoms re-dissolution on precipitation behavior and mechanical properties of selective laser melted Al–Mg-Sc-Zr alloys. Mater Sci Eng A. 2022b;854:143870. doi:10.1016/j.msea.2022.143870
  • Chen Y, Wang L, Feng Z, et al. Effects of heat treatment on microstructure and mechanical properties of SLMed Sc-modified AlSi10Mg alloy. Prog Nat Sci: Mater Int. 2021;31(5):714–721. doi:10.1016/j.pnsc.2021.08.003
  • Ao X, Xia H, Liu J, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton. Mater Des. 2020;185:108230. doi:10.1016/j.matdes.2019.108230
  • Cooper AS. Precise lattice constants of germanium, aluminum,: gallium arsenide, uranium, sulphur, quartz and sapphire. Acta Crystallogr. 1962;15(6):578–582.
  • Cannon JF, Tracy Hall H. Effect of high pressure on the crystal structures of lanthanide trialuminides. J Less Common Metal. 1975;40(3):313–328. doi:10.1016/0022-5088(75)90076-4
  • Srinivasan S, Desch PB, Schwarz RB. Metastable phases in the Al3X (X = Ti,: Zr, and Hf) intermetallic system. Scr Metall Mater. 1991;25(11):2513–2516. doi:10.1016/0956-716X(91)90059-A