572
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Internal topology optimisation of 3D printed concrete structures: a method for enhanced performance and material efficiency

, , &
Article: e2346290 | Received 17 Jan 2024, Accepted 15 Apr 2024, Published online: 08 May 2024

References

  • Craveiro F, Duarte JP, Bartolo H, et al. Additive manufacturing as an enabling technology for digital construction: a perspective on construction 4.0. Autom Constr. 2019 Jul;103:251–267 doi: 10.1016/j.autcon.2019.03.011.
  • Flatt RJ, Roussel N, Cheeseman CR. Concrete: an eco material that needs to be improved. J Eur Ceram Soc. 2012 Aug;32(11):2787–2798 doi: 10.1016/j.jeurceramsoc.2011.11.012.
  • Silfwerbrand J. Concrete and sustainability – some thoughts from a Swedish horizon. Nord Concr Res. 2020 Dec;63(2):79–87 doi: 10.2478/ncr-2020-0019.
  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019 Sept;123:105780. doi: 10.1016/j.cemconres.2019.105780.
  • Menna C, Mata-Falcón J, Bos FP, et al. Opportunities and challenges for structural engineering of digitally fabricated concrete. Cem Concr Res. 2020 Jul;133:106079. doi: 10.1016/j.cemconres.2020.106079.
  • Wangler T, Lloret E, Reiter L, et al. Digital concrete: opportunities and challenges. RILEM Tech Lett. 2016 Oct;1:67–75 doi: 10.21809/rilemtechlett.2016.16.
  • Buswell RA, Leal de Silva WR, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018 Oct;112:37–49 doi: 10.1016/j.cemconres.2018.05.006.
  • Buswell RA, Da Silva WL, Bos FP, et al. A process classification framework for defining and describing digital fabrication with concrete. Cem Concr Res. 2020 Aug;134:106068. doi: 10.1016/j.cemconres.2020.106068.
  • Anton A, Reiter L, Wangler T, et al. A 3D concrete printing prefabrication platform for bespoke columns. Autom Constr. 2021 Feb;122:103467. doi: 10.1016/j.autcon.2020.103467.
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020 Jun;132(132):106037. doi: 10.1016/j.cemconres.2020.106037.
  • Flatt RJ, Wangler T. On sustainability and digital fabrication with concrete. Cem Concr Res. 2022 May;158:106837. doi: 10.1016/j.cemconres.2022.106837.
  • Robayo-Salazar R, Mejía de Gutiérrez R, Villaquirán-Caicedo MA, et al. 3D printing with cementitious materials: challenges and opportunities for the construction sector. Autom Constr. 2023 Feb;146:104693. doi: 10.1016/j.autcon.2022.104693.
  • Bi M, Tran P, Xia L, et al. Topology optimization for 3D concrete printing with various manufacturing constraints. Addit Manuf. 2022 Sept;57:102982. doi: 10.1016/j.addma.2022.102982.
  • McConaha M, Venugopal V, Anand S. Design tool for topology optimization of self supporting variable density lattice structures for additive manufacturing. J Manuf Sci Eng. 2021 Feb;143(7):071001. doi: 10.1115/1.4049507.
  • Wu J, Aage N, Westermann R, et al. Infill optimization for additive manufacturing – approaching bone-like porous structures. IEEE Trans Vis Comput Graph. 2018 Feb;24(2):1127–1140 doi: 10.1109/TVCG.2017.2655523.
  • Vantyghem G, De Corte W, Shakour E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr. 2020 Apr;112:103084. doi: 10.1016/j.autcon.2020.103084.
  • Ooms T, Vantyghem G, Tao Y, et al. The production of a topology-optimized 3D-printed concrete bridge. In: Buswell R, Blanco A, Cavalaro S, et al. editors. Third RILEM international conference on concrete and digital fabrication. Cham: Springer International Publishing; 2022. p. 37–42.
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022 Mar;17(3):662–681 doi: 10.1080/17452759.2022.2048521.
  • Yang W, Wang L, Ma G, et al. An integrated method of topological optimization and path design for 3D concrete printing. Eng Struct. 2023 Sept;291:116435. doi: 10.1016/j.engstruct.2023.116435.
  • Breseghello L, Naboni R. Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Addit Manuf. 2022 Aug;56:102872. doi: 10.1016/j.addma.2022.102872.
  • Amir O, Shakour E. Simultaneous shape and topology optimization of prestressed concrete beams. Struct Multidiscipl Optim. 2018 May;57(5):1831–1843 doi: 10.1007/s00158-017-1855-5.
  • Breseghello L, Hajikarimian H, Jørgensen HB, et al. 3DLightBeam+. Design, simulation, and testing of carbon-efficient reinforced 3D concrete printed beams. Eng Struct. 2023 Oct;292:116511. doi: 10.1016/j.engstruct.2023.116511.
  • Torelli G, Fernández MG, Lees JM. Functionally graded concrete: design objectives, production techniques and analysis methods for layered and continuously graded elements. Constr Build Mater. 2020 May;242:118040. doi: 10.1016/j.conbuildmat.2020.118040.
  • Hernández Vargas J, Westerlind H, Silfwerbrand J. Grading material properties in 3D printed concrete structures. Nord Concr Res. 2022 Jul;66(1):73–89 doi: 10.2478/ncr-2022-0004.
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225 doi: 10.1080/17452759.2016.1209867.
  • Duballet R, Gosselin C, Roux P. Additive manufacturing and multi-objective optimization of graded polystyrene aggregate concrete structures. In: Thomsen MR, Tamke M, Gengnagel C, et al. editors. Modelling behaviour: design modelling symposium 2015. Cham: Springer International Publishing; 2015. p. 225–235. [accessed 2021 Mar 5].
  • Ahmed Z, Bos F, van Brunschot M, et al. On-demand additive manufacturing of functionally graded concrete. Virtual Phys Prototyp. 2020;15(2):194–210 doi: 10.1080/17452759.2019.1709009.
  • Ma G, Buswell R, Leal da Silva WR, et al. Technology readiness: a global snapshot of 3D concrete printing and the frontiers for development. Cem Concr Res. 2022 Jun;156:106774. doi: 10.1016/j.cemconres.2022.106774.
  • Mechtcherine V, Fataei S, Bos FP, et al. Digital fabrication with cement-based materials: underlying physics. In: Roussel N, Lowke D, editors. Digital fabrication with cement-based materials: state-of-the-art report of the RILEM TC 276-DFC. Cham: Springer International Publishing; 2022. p. 49–98.
  • Bos FP, Menna C, Pradena M, et al. The realities of additively manufactured concrete structures in practice. Cem Concr Res. 2022 Jun;156:106746. doi: 10.1016/j.cemconres.2022.106746.
  • Huang S, Xu W, Li Y. The impacts of fabrication systems on 3D concrete printing building forms. Front Archit Res. 2022 Aug;11(4):653–669 doi: 10.1016/j.foar.2022.03.004.
  • Li S, Xin Y, Yu Y, et al. Design for additive manufacturing from a force-flow perspective. Mater Des. 2021 Jun;204:109664. doi: 10.1016/j.matdes.2021.109664.
  • Gibson I, Rosen D, Stucker B, et al. Additive manufacturing technologies. Cham: Springer International Publishing; 2021. doi: 10.1007/978-3-030-56127-7
  • Pontes AJ. Chapter 7 -- Designing for additive manufacturing. In: Pouzada AS editor. Design and manufacturing of plastics products. William Andrew Publishing; 2021 Jan. p. 249–292.
  • Zhang X, Liou F. Chapter 1 -- Introduction to additive manufacturing. In: Pou J, Riveiro A, Davim JP, editors. Additive manufacturing. Amsterdam, Netherlands: Elsevier; 2021 Jan. p. 1–31.
  • ISO. Standard -- Additiv tillverkning -- Allmänna principer -- Grunder och terminologi (ISO/ASTM 52900:2021) SS-EN ISO/ASTM 52900:2021 (No. ISO/ASTM 52915:2020). 2021. [accessed 2023 Jan 24]. Available from: https://www.sis.se/produkter/terminologi-och-dokumentation/ordlistor/produktionsteknik-ordlistor/ss-en-isoastm-529002021/.
  • Associates RM. Rhino and grasshopper developer documentation; n.d. [accessed 2023 Nov 9]. Available from: https://developer.rhino3d.com/.
  • Gaudillière N, Duballet R, Bouyssou C, et al. Chapter 3 -- building applications using lost formworks obtained through large-scale additive manufacturing of ultra-high-performance concrete. In Sanjayan JG, Nazari A, Nematollahi B, editors. 3D concrete printing technology. Oxford, UK: Butterworth-Heinemann; 2019 Jan. p. 37–58.
  • Wolfs RJM, Bos FP, Salet TAM. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res. 2019 May;119:132–140 doi: 10.1016/j.cemconres.2019.02.017.
  • Breseghello L, Naboni R. Adaptive toolpath: enhanced design and process control for robotic 3DCP. In: Gerber D, Pantazis E, Bogosian B, et al. editors. Computer-aided architectural design. Design imperatives: the future is now. Singapore: Springer; 2022. p. 301–316.
  • Xia L, Bi M, Wu J, et al. Integrated lightweight design method via structural optimization and path planning for material extrusion. Addit Manuf. 2023 Jan;62:103387. doi: 10.1016/j.addma.2022.103387.
  • Yu R. A digital workflow for the design and manufacturing of 3D printed concrete bridges in a circular economy: structural design considerations for pre-stressed beams and dry connections [EngD Thesis]. EindhovenTechnische Universiteit Eindhoven; 2022.
  • Kloft H, Empelmann M, Hack N, et al. Reinforcement strategies for 3D-concrete-printing. Civ Eng Des. 2020;2(4):131–139doi: 10.1002/cend.202000022.
  • Gebhard L, Mata-Falcón J, Anton A, et al. Aligned interlayer fibre reinforcement and post-tensioning as a reinforcement strategy for digital fabrication. In: Bos FP, Lucas SS, Wolfs RJ, et al. editors. Second RILEM international conference on concrete and digital fabrication. Cham: Springer International Publishing; 2020. p. 622–631.
  • Salet TAM, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp. 2018 Jul;13(3):222–236 doi: 10.1080/17452759.2018.1476064.
  • Wangler T, Pileggi R, Gürel S, et al. A chemical process engineering look at digital concrete processes: critical step design, inline mixing, and scaleup. Cem Concr Res. 2022 May;155:106782. doi: 10.1016/j.cemconres.2022.106782.
  • Wolfs RJM, Salet TAM, Roussel N. Filament geometry control in extrusion-based additive manufacturing of concrete: the good, the bad and the ugly. Cem Concr Res. 2021 Dec;150:106615. doi: 10.1016/j.cemconres.2021.106615.
  • Yuan PF, Zhan Q, Wu H, et al. Real-time toolpath planning and extrusion control (RTPEC) method for variable-width 3D concrete printing. J Build Eng. 2022 Apr;46:103716. doi: 10.1016/j.jobe.2021.103716.
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018 Oct;112:76–85 doi: 10.1016/j.cemconres.2018.04.005.
  • Comminal R, Leal da Silva WR, Andersen TJ, et al. Modelling of 3D concrete printing based on computational fluid dynamics. Cem Concr Res. 2020 Dec;138:106256. doi: 10.1016/j.cemconres.2020.106256.
  • Tay YWD, Li MY, Tan MJ. Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol. 2019 Sept;271:261–270 doi: 10.1016/j.jmatprotec.2019.04.007.
  • ISO. SS-EN 12390-5:2019 Standard -- Provning av hårdnad betong -- Del 5: Böjdraghållfasthet hos provkroppar (No. SS-EN 12390-5). 2019. [accessed 2023 May -25]. Available from: https://www.sis.se/produkter/byggnadsmaterial-och-byggnader/byggnadsmaterial/betong-och-betongprodukter/ss-en-12390-52019/.
  • Gaynor AT, Guest JK. Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscipl Optim. 2016 Nov;54(5):1157–1172 doi: 10.1007/s00158-016-1551-x.
  • Sigmund O. A 99 line topology optimization code written in Matlab. Struct Multidiscipl Optim. 2001 Apr;21(2):120–127 doi: 10.1007/s001580050176.
  • Hunter W. Topy -- topology optimization with python. GitHub; 2017. Available from: https://github.com/williamhunter/topy.
  • Zhang J, Khoshnevis B. Optimal machine operation planning for construction by contour crafting. Autom Constr. 2013 Jan;29:50–67 doi: 10.1016/j.autcon.2012.08.006.
  • He R, Li M, Gan VJL, et al. BIM-enabled computerized design and digital fabrication of industrialized buildings: a case study. J Clean Prod. 2021 Jan;278:123505. doi: 10.1016/j.jclepro.2020.123505.
  • Sikacrete® -751 3D. n.d. [accessed 2023 Oct 12]. Available from: https://deu.sika.com/de/construction/betonherstellung/fertigteile-und-betonwaren/3d-betondruck/sikacrete-751-3d.html.