393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted 3D printing of epoxy resin ink using rectangular waveguide

, , &
Article: e2346293 | Received 14 Dec 2023, Accepted 16 Apr 2024, Published online: 06 May 2024

References

  • Pascault J, Williams RJJ. Thermosetting polymers, in Handbook of Polymer Synthesis, Characterization, and Processing, 2013; pp. 519–533. doi: 10.1002/9781118480793.ch28
  • Arun ND, et al. Nonplanar 3D printing of epoxy using freeform reversible embedding. Adv Mater Technol. 2023;8(7):2201542. doi: 10.1002/admt.202201542
  • Lewis JA, Gratson GM. Direct writing in three dimensions. Mater Today. 2004;7(7–8):32–39. doi:10.1016/S1369-7021(04)00344-X
  • Chi H, et al. Three-dimensional printing and recycling of multifunctional composite material based on commercial epoxy resin and graphene nanoplatelet. ACS Appl Mater Interfaces. 2022;14(11):13758–13767. doi: 10.1021/acsami.2c00910
  • Marnot A, et al. Material extrusion additive manufacturing of high particle loaded suspensions: a review of materials, processes and challenges. Virtual Phys Prototyp. 2023;18(1):e2279149. doi: 10.1080/17452759.2023.2279149
  • Zhao G, et al. Ti/β-tcp composite porous scaffolds fabricated by direct ink writing. Virtual Phys Prototyp. 2023;18(1):e2192703. doi: 10.1080/17452759.2023.2192703
  • Kuang X, et al. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol Rapid Commun 2018;39(7):1700809. doi: 10.1002/marc.201700809
  • Barki AM, Bocquet L, Stevenson A. Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci Rep 2017;7(1):6017. doi: 10.1038/s41598-017-06115-0
  • Weng Y, et al. Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual Phys Prototyp. 2019;14(3):284–292. doi: 10.1080/17452759.2018.1555046
  • Zhong J, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon. 2017;117:421–426. doi: 10.1016/j.carbon.2017.02.102
  • Compton BG, Lewis JA. 3D-printing of lightweight cellular composites. Adv Mater 2014;26(34):5930–5935. doi: 10.1002/adma.201401804
  • Chen KJ, et al. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter. 2018;14(10):1879–1886. doi: 10.1039/C7SM02362F
  • Griffini G, et al. 3D-printable CFR polymer composites with dual-cure sequential IPNs. Polymer. 2016;91:174–179. doi: 10.1016/j.polymer.2016.03.048
  • Zhu J, et al. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat Commun 2020;11(1):3462. doi: 10.1038/s41467-020-17251-z
  • Sun Y, et al. 3D printing of thermosets with diverse rheological and functional applicabilities. Nat Commun 2023;14(1):245. doi: 10.1038/s41467-023-35929-y
  • Liao H. Stereolithography using compositions containing ceramic powders. Canada: University of Toronto; 1997.
  • Endruweit A, Johnson MS, Long AC. Curing of composite components by ultraviolet radiation: a review. Polym Compos 2006;27(2):119–128. doi: 10.1002/pc.20166
  • Huang L, et al. Synthesis and optimization of a free-radical/cationic hybrid photosensitive UV curable resin using polyurethane acrylate and graphene oxide. Polymers (Basel). 2022;14(10):1959. doi: 10.3390/polym14101959
  • Wang TB, Liu J. A review of microwave curing of polymeric materials. J Electron Manuf 2000;10(3):181–189. doi: 10.1142/S0960313100000162
  • Mgbemena CO, et al. Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: a review of scientific challenges.. Compos Part A Appl Sci Manuf 2018;115:88–103. doi: 10.1016/j.compositesa.2018.09.012
  • Naik TP, Singh I, Sharma AK. Processing of polymer matrix composites using microwave energy: a review. Compos Part A Appl Sci Manuf 2022;156:106870. doi: 10.1016/j.compositesa.2022.106870
  • Odom MGB, et al. Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites. Carbon. 2017;120:447–453. doi: 10.1016/j.carbon.2017.05.063
  • Thostenson ET, Chou TW. Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 1999;30(9):1055–1071. doi: 10.1016/S1359-835X(99)00020-2
  • Clark DE, Sutton WH. Microwave processing of materials. Annu Rev Mater Sci 1996;26:299–331. doi: 10.1146/annurev.ms.26.080196.001503
  • Li K, et al. Quantitative evaluation of the non-thermal effect in microwave induced polymer curing. RSC Adv 2021;11(6):3740–3750. doi: 10.1039/D0RA08427A
  • Bolasodun B. Microwave effects on the curing, structure properties and decomposition of epoxy resins. United Kingdom: University of Manchester; 2011.
  • Shimamoto D, Tominaga Y, Hotta Y. Effect of microwave irradiation on carbon fiber/epoxy resin composite fabricated by vacuum assisted resin transfer molding. Adv Compos Mater 2016;25(sup1):71–79. doi:10.1080/09243046.2016.1178998
  • Román Manso B, et al. Embedded 3D printing of architected ceramics via microwave-activated polymerization. Adv Mater 2023;35(15):2209270. doi: 10.1002/adma.202209270
  • Li N, Link G, Jelonnek J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics. CIRP Ann. 2020;69(1):221–224. doi: 10.1016/j.cirp.2020.04.057
  • Li N, et al. Microwave additive manufacturing of continuous carbon fibers reinforced thermoplastic composites: characterization, analysis, and properties. Addit Manuf. 2021;44:102035. doi: 10.1016/j.addma.2021.102035
  • Zhao Z, et al. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innov Food Sci Emerg Technol. 2021;67:102546. doi: 10.1016/j.ifset.2020.102546
  • Yu X, et al. Effects of preheating-induced denaturation treatments on the printability and instant curing property of soy protein during microwave 3D printing. Food Chem 2022;397:133682. doi: 10.1016/j.foodchem.2022.133682
  • Zhou Z, et al. An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels. Mater Des 2021;206:109792. doi: 10.1016/j.matdes.2021.109792
  • Deng K, Zhang C, Fu KK. Additive manufacturing of continuously reinforced thermally curable thermoset composites with rapid interlayer curing. Compos Pt B-Eng. 2023;257:110671. doi: 10.1016/j.compositesb.2023.110671
  • Guan D, et al. Rheological study on the cure kinetics of two-component addition cured silicone rubber. Chin J Polym Sci 2016;34(10):1290–1300. doi: 10.1007/s10118-016-1847-8
  • Compton BG, et al. Electrical and mechanical properties of 3D-printed graphene-reinforced epoxy. JOM. 2018;70(3):292–297. doi: 10.1007/s11837-017-2707-x
  • Rau DA, Williams CB, Bortner MJ. Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog Mater Sci 2023;140:101188. doi: 10.1016/j.pmatsci.2023.101188
  • Romberg SK, et al. Linking thermoset ink rheology to the stability of 3D-printed structures. Addit Manuf. 2021;37:101621. doi: 10.1016/j.addma.2020.101621
  • Costakis WJ, et al. Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J Eur Ceram Soc 2016;36(14):3249–3256. doi: 10.1016/j.jeurceramsoc.2016.06.002
  • Rau DA, et al. A dual-cure approach for the ultraviolet-assisted material extrusion of highly loaded opaque suspensions. Addit Manuf. 2023;72:103616. doi: 10.1016/j.addma.2023.103616
  • Kam D, et al. 3D printing of cellulose nanocrystal-loaded hydrogels through rapid fixation by photopolymerization. Langmuir. 2021;37(21):6451–6458. doi: 10.1021/acs.langmuir.1c00553
  • Kopatz JW, et al. Compositional effects on cure kinetics, mechanical properties and printability of dual-cure epoxy/acrylate resins for DIW additive manufacturing. Addit Manuf. 2021;46:102159. doi: 10.1016/j.addma.2021.102159
  • Zhang Z, et al. Ultra-broadband and wide-angle metamaterial absorber with carbon black/carbonyl iron composites fabricated by direct-ink-write 3D printing. Adv Eng Mater 2023;25(6):2201236. doi: 10.1002/adem.202201236