352
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D-printed biodegradable polycaprolactone rib implants with tissue-specific mechanical properties promote chest wall recovery by stimulating tissue fibrosis

, , , , , , , & show all
Article: e2346816 | Received 31 Mar 2024, Accepted 19 Apr 2024, Published online: 30 Apr 2024

References

  • Mansour KA, Thourani VH, Losken A, et al. Chest wall resections and reconstruction: a 25-year experience. Ann. Thorac. Surg. 2002;73(6):1720–1726. doi:10.1016/S0003-4975(02)03527-0
  • Liu F-Z, Wang D-W, Zhang Y-J, et al. Comparison of rabbit rib defect regeneration with and without graft. J Mater Sci Mater Med. 2016;28(1):1–5.
  • Sanna S, Brandolini J, Pardolesi A, et al. Materials and techniques in chest wall reconstruction: a review. J Vis Surg. 2017;3:95. doi:10.21037/jovs.2017.06.10
  • Berthet JP, Wihlm JM, Canaud L, et al. The combination of polytetrafluoroethylene mesh and titanium rib implants: an innovative process for reconstructing large full thickness chest wall defects. Eur J Cardiothorac Surg. 2012;42(3):444–453. doi:10.1093/ejcts/ezs028
  • Liptak JM, Dernell WS, Rizzo SA, et al. Reconstruction of chest wall defects after Rib tumor resection: A comparison of autogenous, prosthetic, and composite techniques in 44 dogs. Vet Surg. 2008;37(5):479–487. doi:10.1111/j.1532-950X.2008.00413.x
  • Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering; 2024. doi:10.1016/j.eng.2024.01.028
  • Wen X, Gao S, Feng J, et al. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J Cardiothorac Surg. 2018;13(1):4. doi:10.1186/s13019-017-0692-3
  • Danker SJ, Mericli AF, Rice DC, et al. Custom 3D-printed titanium implant for reconstruction of a composite chest and abdominal wall defect. Plast Reconstr Surg Glob Open. 2021;9(11):e3885. doi:10.1097/GOX.0000000000003885
  • Goldsmith I, Evans PL, Goodrum H, et al. Chest wall reconstruction with an anatomically designed 3-D printed titanium ribs and hemi-sternum implant. 3D Print Med. 2020;6(1):26. doi:10.1186/s41205-020-00079-0
  • Simal I, García-Casillas M, Cerdá J, et al. Three-Dimensional custom-made titanium ribs for reconstruction of a large chest wall defect. Eur J Pediatr Surg Rep. 2016;04(01):0026-030. doi:10.1055/s-0036-1593738
  • Kang J, Tian Y, Zheng J, et al. Functional design and biomechanical evaluation of 3D printing PEEK flexible implant for chest wall reconstruction. Comput Methods Programs Biomed. 2022;225:107105. doi:10.1016/j.cmpb.2022.107105
  • Honigmann P, Sharma N, Okolo B, et al. Patient-Specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. Biomed Res Int. 2018;2018:1–8. doi:10.1155/2018/4520636
  • Li Y, Li Z, Tian L, et al. Clinical application of 3D-printed PEEK implants for repairing mandibular defects. Journal of Cranio-Maxillofacial Surgery. 2022;50(8):621–626. doi:10.1016/j.jcms.2022.06.002
  • Kang J, Zhang J, Zheng J, et al. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021;116:104335. doi:10.1016/j.jmbbm.2021.104335
  • Wang L, Huang L, Li X, et al. Three-Dimensional printing PEEK implant: A novel choice for the reconstruction of chest wall defect. Ann Thorac Surg. 2019;107(3):921–928. doi:10.1016/j.athoracsur.2018.09.044
  • Kang J, Wang L, Yang C, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018;17(4):1083–1092. doi:10.1007/s10237-018-1015-x
  • Wang L, Liu X, Jiang T, et al. Three-dimensional printed polyether-ether-ketone implant for extensive chest wall reconstruction: A case report. Thorac Cancer. 2020;11(9):2709–2712. doi:10.1111/1759-7714.13560
  • Mancera J, Echeverri V, Castillo AM, et al. Clinical experience of thoracoplasty with absorbable rib substitutes. Pediatr Surg Int. 2023;39(1):146. doi:10.1007/s00383-023-05413-1
  • Komatsu T, Sato T, Sakaguchi Y, et al. Development of a socket-type rib coaptation device made of poly-L-lactide fibers: feasibility study in a canine model. J Thorac Dis. 2018;10(4):2213–2222. doi:10.21037/jtd.2018.03.75
  • Yu YH, Hsu YH, Chou YC, et al. Sustained relief of pain from osteosynthesis surgery of rib fracture by using biodegradable lidocaine-eluting nanofibrous membranes. Nanomedicine. 2016;12(7):1785–1793. doi:10.1016/j.nano.2016.04.015
  • Bai B, Hao J, Hou M, et al. Repair of large-scale Rib defects based on steel-reinforced concrete-designed biomimetic 3D-printed scaffolds with bone-mineralized microenvironments. ACS Appl Mater Interfaces. 2022;14(37):42388–42401. doi:10.1021/acsami.2c08422
  • Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication. 2017;9(1):0012002. doi:10.1088/1758-5090/aa5766
  • Meng Z, He J, Li J, et al. Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virtual Phys Prototyp. 2020;15(4):417–444. doi:10.1080/17452759.2020.1808937
  • Maduka CV, Alhaj M, Ural E, et al. Polylactide degradation activates immune cells by metabolic reprogramming. Adv Sci. 2023;10(31):2304632.
  • Bartnikowski M, Dargaville TR, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci. 2019;96:1–20. doi:10.1016/j.progpolymsci.2019.05.004
  • Yu YH, Lin YT, Hsu YH, et al. Biodegradable antimicrobial agent/analgesic/bone morphogenetic protein-loaded nanofibrous fixators for bone fracture repair. Int J Nanomed. 2021;16:5357–5370. doi:10.2147/IJN.S325885
  • Cheng ME, Janzekovic J, Theile HJ, et al. Pectus excavatum camouflage: a new technique using a tissue engineered scaffold. Eur J Plast Surg. 2022;45(1):177–182. doi:10.1007/s00238-021-01902-5
  • Ayagara AR, Langlet A, Hambli R. On dynamic behavior of bone: Experimental and numerical study of porcine ribs subjected to impact loads in dynamic three-point bending tests. J Mech Behav Biomed Mater. 2019;98:336–347. doi:10.1016/j.jmbbm.2019.05.031
  • Albert DL, Katzenberger MJ, Agnew AM, et al. A comparison of rib cortical bone compressive and tensile material properties: Trends with age, sex, and loading rate. J Mech Behav Biomed Mater. 2021;122:104668. doi:10.1016/j.jmbbm.2021.104668
  • Dias D, Belinha J. The computational simulation and impact analysis of the rib bones. J Comput Artif Intell Mech Biomech. 2021;1(3):71–80.
  • Meng Z, He J, Li D. Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual Phys Prototyp. 2021;16(3):291–305. doi:10.1080/17452759.2021.1930069
  • Wang L, Liu W, He J, et al. Treatment of bronchomalacia using three-dimensional printed polycaprolactone scaffold in a pediatric patient. J Thorac Cardiovasc Surg. 2019;157(5):e287–e290. doi:10.1016/j.jtcvs.2018.11.095
  • Meng Z, Mu X, He J, et al. Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration. Int J Extreme Manuf. 2023;5(2):0025001. doi:10.1088/2631-7990/acbd6c
  • Meng Z, He J, Cai Z, et al. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater Des. 2020;189:108508. doi:10.1016/j.matdes.2020.108508
  • Meng Z, He J, Cai Z, et al. In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties. Biofabrication. 2020;12(3):0035012. doi:10.1088/1758-5090/ab860e
  • Lee NN, Kramer JS, Stoker AM, et al. Canine models of spine disorders. Jor Spine. 2020;3(4):e1109. doi:10.1002/jsp2.1109
  • Soltani P, Shahnaseri S, Sheikhi M, et al. Comparison of autogenous bone graft and tissue-engineered bone graft in alveolar cleft defects in canine animal models using digital radiography. Indian J Dent Res. 2020;31(1):118–123. doi:10.4103/ijdr.IJDR_156_18
  • Li Z, Zhu W, Zhang B, et al. A novel minimally invasive fixation method for flail chest management in a Canine model: an animal research. J Cardiothorac Surg. 2023;18(1):359. doi:10.1186/s13019-023-02445-5
  • Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res. 2021;39(1):7–21. doi:10.1002/jor.24852
  • Liu W, Meng Z, Zheng K, et al. Development of three-dimensional printed biodegradable external airway splints with native-like shape and mechanical properties for tracheomalacia treatment. Mater Des. 2021;210:110105. doi:10.1016/j.matdes.2021.110105
  • Kong L, Deng J, Zhou X, et al. Sitagliptin activates the p62–Keap1–Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury. Cell Death Dis. 2021;12(10):928. doi:10.1038/s41419-021-04227-0
  • He Y, Zhu B, Tan S, et al. Improving the energy storage performance of a chlorinated poly(vinyl chloride) film at elevated electric field and temperature via a simple annealing process. ACS Appl Energy Mater. 2023;6(10):5407–5415. doi:10.1021/acsaem.3c00518
  • Sajkiewicz P, Heljak MK, Gradys A, et al. Degradation and related changes in supermolecular structure of poly(caprolactone) in vivo conditions. Polym Degrad Stab 2018;157:70–79. doi:10.1016/j.polymdegradstab.2018.09.023
  • Poltue T, Karuna C, Khrueaduangkham S, et al. Design exploration of 3D-printed triply periodic minimal surface scaffolds for bone implants. Int J Mech Sci. 2021;211:106762. doi:10.1016/j.ijmecsci.2021.106762
  • Feng J, Fu J, Yao X, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001), doi:10.1088/2631-7990/ac5be6
  • Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extreme Manuf. 2022;4(4):042002. doi:10.1088/2631-7990/ac9096
  • Nho RS, Ballinger MN, Rojas MM, et al. Biomechanical force and cellular stiffness in lung fibrosis. Am J Pathol. 2022;192(5):750–761. doi:10.1016/j.ajpath.2022.02.001
  • Qi Y, Wang C, Wang Q, et al. A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. Eur Polym J. 2023;186:111863. doi:10.1016/j.eurpolymj.2023.111863
  • Song Y, Li L, Zhao W, et al. Surface modification of electrospun fibers with mechano-growth factor for mitigating the foreign-body reaction. Bioactive Mater. 2021;6(9):2983–2998. doi:10.1016/j.bioactmat.2021.02.020
  • Li X, Yuan Y, Liu L, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf. 2020;3(1):15–29. doi:10.1007/s42242-019-00056-5
  • Han X, Sun M, Chen B, et al. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioactive Mater. 2021;6(6):1639–1652. doi:10.1016/j.bioactmat.2020.11.019