719
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Strategies towards large-scale 3D printing without size constraints

, , , , , , , , , , & show all
Article: e2346821 | Received 29 Feb 2024, Accepted 18 Apr 2024, Published online: 02 May 2024

References

  • MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353(6307). doi:10.1126/science.aaf2093
  • Zuo Z, De Corte W, Huang Y, et al. Propelling the widespread adoption of large-scale 3D printing. Nat Rev Mater. 2023. doi:10.1038/s41578-023-00626-1
  • Lim S, Buswell RA, Le TT, et al. Developments in construction-scale additive manufacturing processes. Autom Constr. 2012;21:262–268. doi:10.1016/j.autcon.2011.06.010
  • Das S, Bourell DL, Babu SS. Metallic materials for 3D printing. MRS Bull. 2016;41(10):729–741. doi:10.1557/mrs.2016.217
  • Buswell RA, Thorpe A, Soar RC, et al. Design,: data and process issues for mega-scale rapid manufacturing machines used for construction. Autom Constr. 2008;17(8):923–929. doi:10.1016/j.autcon.2008.03.001
  • Compton BG, Lewis JA. 3D-printing of lightweight cellular composites. Adv Mater. 2014;26(34):5930–5935. doi:10.1002/adma.201401804
  • Tay YW, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12(3):261–276. doi:10.1080/17452759.2017.1326724
  • Pegna J. Exploratory investigation of solid freeform construction. Autom Constr. 1997;5(5):427–437. doi:10.1016/S0926-5805(96)00166-5
  • Buswell RA, Soar RC, Gibb AGF, et al. Freeform construction: mega-scale rapid manufacturing for construction. Autom Constr. 2007;16(2):224–231. doi:10.1016/j.autcon.2006.05.002
  • Lu B, Li D, Tian X. Development trends in additive manufacturing and 3D printing. Engineering. 2015;1(1):085–089. doi:10.15302/J-ENG-2015012
  • Schaedler TA, Carter WB. Architected cellular materials. Annu Rev Mater Res. 2016;46(1):187–210. doi:10.1146/annurev-matsci-070115-031624
  • Kumar S, Wardle BL, Arif MF. Strength and performance enhancement of bonded joints by spatial tailoring of adhesive compliance via 3D printing. ACS Appl Mater Interfaces. 2017;9(1):884–891. doi:10.1021/acsami.6b13038
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349–1352. doi:10.1126/science.aaa2397
  • Choong YY, Tan HW, Patel DC, et al. The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater. 2020;5(9):637–639. doi:10.1038/s41578-020-00234-3
  • Chen Y, Fu Q, Li D, et al. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of Zearalenone. Anal Bioanal Chem. 2017;409(28):6567–6574. doi:10.1007/s00216-017-0605-2
  • Tan HW, Choong YYC, Kuo CN, et al. 3D printed electronics: processes,: materials and future trends. Prog Mater Sci. 2022;127:100945. doi:10.1016/j.pmatsci.2022.100945
  • Holland S, Foster T, MacNaughtan W, et al. Design and characterisation of food grade powders and inks for microstructure control using 3D printing. J Food Eng. 2018;220:12–19. doi:10.1016/j.jfoodeng.2017.06.008
  • Tian L, Magnenat Thalmann N, Thalmann D, et al. The making of a 3D-printed,: cable-driven, single-model, lightweight humanoid robotic hand. Front Robot AI. 2017;4. doi:10.3389/frobt.2017.00065
  • Wei TS, Ahn BY, Grotto J, et al. 3D printing of customized li-ion batteries with thick electrodes. Adv Mater. 2018;30(16):1703027. doi:10.1002/adma.201703027
  • Li Z, Wang Z, Gan X, et al. Selective laser sintering 3D printing: a way to construct 3D electrically conductive segregated network in polymer matrix. Macromol Mater Eng. 2017;302(11):1700211. doi:10.1002/mame.201700211
  • Ahn BY, Duoss EB, Motala MJ, et al. Omnidirectional printing of flexible,: stretchable, and spanning silver microelectrodes. Science. 2009;323(5921):1590–1593. doi:10.1126/science.1168375
  • Ahn SH, Yoon HS, Jang KH, et al. Nanoscale 3D printing process using aerodynamically focused nanoparticle (AFN) printing,: micro-machining, and focused ion beam (FIB). CIRP Ann. 2015;64(1):523–526. doi:10.1016/j.cirp.2015.03.007
  • Chen J, Leblanc V, Kang SH, et al. High definition digital fabrication of active organic devices by molecular jet printing. Adv Funct Mater. 2007;17(15):2722–2727. doi:10.1002/adfm.200601144
  • Kadimisetty K, Song J, Doto AM, et al. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron. 2018;109:156–163. doi:10.1016/j.bios.2018.03.009
  • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504. doi:10.1016/j.mattod.2013.11.017
  • Kolesky DB, Truby RL, Gladman AS, et al. 3D bioprinting of vascularized,: heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–3130. doi:10.1002/adma.201305506
  • Mironov V, Boland T, Trusk T, et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157–161. doi:10.1016/S0167-7799(03)00033-7
  • Sun Y, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater. 2015;27(47):7847–7853. doi:10.1002/adma.201504122
  • Connell JL, Kim J, Shear JB, et al. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc Natl Acad Sci USA. 2014;111(51):18255–18260. doi:10.1073/pnas.1421211111
  • Díaz-Marta AS, Tubío CR, Carbajales C, et al. Three-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 2018;8(1):392–404. doi:10.1021/acscatal.7b02592
  • Sreedhar N, Thomas N, Al-Ketan O, et al. 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination. 2018;425:12–21. doi:10.1016/j.desal.2017.10.010
  • Dinwiddie R, Love L, Rowe J. Real-time process monitoring and temperature mapping of a 3D polymer printing process. Proceedings of SPIE; 2013 May 22. doi:10.1117/12.1518454
  • Almaghariz ES, Conner BP, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int J Metalcast. 2016;10(3):240–252. doi:10.1007/s40962-016-0027-5
  • Zhang X, Li M, Lim JH, et al. Large-scale 3D printing by a team of mobile robots. Autom Constr. 2018;95:98–106. doi:10.1016/j.autcon.2018.08.004
  • Rutkin A. Watch as the world’s first 3D-printed house goes up. New Sci. 2014;221(2960):24. doi:10.1016/s0262-4079(14)60529-7
  • Wang H. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronaut Astronaut Sin. 2014;35:2690–2698. doi:10.7527/S1000-6893.2014.0174
  • Lin X, Huang W. Laser additive manufacturing of high-performance metal components. Sci Sin Inform. 2015;45(9):1111–1126. doi:10.1360/n112014-00245
  • Talagani MR, Dormohammadi S, Dutton R, et al. Numerical simulation of big area additive manufacturing (3D printing) of a full size car. SAMPE J. 2015;51(4):27–36.
  • Ruiz LE, Pinho AC, Resende DN. 3D printing as a disruptive technology for the circular economy of plastic components of end-of-life vehicles: a Systematic Review. Sustainability. 2022;14(20):13256. doi:10.3390/su142013256
  • Thomas DJ. Advanced active-gas 3D printing of 436 stainless steel for future rocket engine structure manufacture. J Manuf Process. 2022;74:256–265. doi:10.1016/j.jmapro.2021.12.037
  • He T, Yu S, Shi Y, et al. Forming and mechanical properties of wire arc additive manufacture for marine propeller bracket. J Manuf Process. 2020;52:96–105. doi:10.1016/j.jmapro.2020.01.053
  • Queral V. Concept,: production and validation of a 3D-printed coil frame for the UST_2 modular stellarator. Fusion Eng Des. 2014;89(9-10):2145–2149. doi:10.1016/j.fusengdes.2014.04.055
  • Liu Y, Chen Z, Li J, et al. 3D printing of ceramic cellular structures for potential nuclear fusion application. Addit Manuf. 2020;35:101348. doi:10.1016/j.addma.2020.101348
  • Liu J, Dong S, Jin X, et al. Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM). Mater Des. 2022;223:111209. doi:10.1016/j.matdes.2022.111209
  • De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cem Concr Res. 2018;112:25–36. doi:10.1016/j.cemconres.2018.06.001
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials,: methods, applications and challenges. Composites Part B. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–627. doi:10.1016/j.conbuildmat.2017.12.051
  • Alhumayani H, Gomaa M, Soebarto V, et al. Environmental assessment of large-scale 3D printing in construction: a comparative study between cob and concrete. J Cleaner Prod. 2020;270:122463. doi:10.1016/j.jclepro.2020.122463
  • He Y, Zhang Y, Zhang C, et al. Energy-saving potential of 3D printed concrete building with integrated living wall. Energy Build. 2020;222:110110. doi:10.1016/j.enbuild.2020.110110
  • Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem Autom. 2003;23(4):340–345. doi:10.1108/01445150310501190
  • Mami F, Revéret J-P, Fallaha S, et al. Evaluating eco-efficiency of 3D printing in the aeronautic industry. J Ind Ecol. 2017;21(S1):S37–S48. doi:10.1111/jiec.12693
  • Zuo Z, Gong J, Huang Y, et al. Experimental research on transition from scale 3D printing to full-size printing in construction. Constr Build Mater. 2019;208:350–360. doi:10.1016/j.conbuildmat.2019.02.171
  • Bos FP, Menna C, Pradena M, et al. The realities of additively manufactured concrete structures in practice. Cem Concr Res. 2022;156:106746. doi:10.1016/j.cemconres.2022.106746
  • Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomater. 2011;2(3):119–154. doi:10.3390/jfb2030119
  • Dimitrov D, Schreve K, de Beer N. Advances in three dimensional printing – state of the art and future perspectives. Rapid Prototyp J. 2006;12(3):136–147. doi:10.1108/13552540610670717
  • Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64. doi:10.1016/j.dental.2015.09.018
  • ISO/TC 261, & ASTM F42. (2021). Additive manufacturing – General principles – Fundamentals and vocabulary (ISO/ASTM 52900: 2021). Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en
  • Vithani K, Goyanes A, Jannin V, et al. An Overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2018;36(1). doi:10.1007/s11095-018-2531-1
  • Zuo Z, Huang Y, Zhang L, et al. 3D printing technology and feasibility analysis of its application in super high-rise buildings. Build Struct. 2022;52(12):95–101. doi:10.19701/j.jzjg.SHJG2109
  • Khoshnevis B, Bukkapatnam S, Kwon H, et al. Experimental investigation of contour crafting using ceramics materials. Rapid Prototyp J. 2001;7(1):32–42. doi:10.1108/13552540110365144
  • Khoshnevis B, Hwang D, Yao KT, et al. Mega-scale fabrication by Contour Crafting. Int J Ind Syst Eng. 2006;1(3):301. doi:10.1504/IJISE.2006.009791
  • Lim S, Le T, Webster J, et al. Fabricating construction components using layer manufacturing technology. Glob Innov Constr Conf. 2009;2009(GICC’09):13–16.
  • Soar R, Andreen D. The role of additive manufacturing and physiomimetic computational design for digital construction. Archit Design. 2012;82(2):126–135. doi:10.1002/ad.1389
  • Gosselin C, Duballet R, Roux P, et al. Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders. Mater Des. 2016;100:102–109. doi:10.1016/j.matdes.2016.03.097
  • Cesaretti G, Dini E, De Kestelier X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014;93:430–450. doi:10.1016/j.actaastro.2013.07.034
  • Joosten SK. Printing a stainless steel bridge: an exploration of structural properties of stainless steel additive manufactures for civil engineering purposes [MA thesis]; 2015.
  • Zuo Z, Gong J, Huang Y. Performance of 3D printing in construction by using computer control technology. The 7th International Conference on Computer Engineering and Networks (CENet2017). 2017;299:371–377. doi:10.22323/1.299.0048
  • Farina I, Fabbrocino F, Colangelo F, et al. Surface roughness effects on the reinforcement of cement mortars through 3D printed metallic fibers. Composites Part B. 2016;99:305–311. doi:10.1016/j.compositesb.2016.05.055
  • Feng P, Meng X, Chen J-F, et al. Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater. 2015;93:486–497. doi:10.1016/j.conbuildmat.2015.05.132
  • Raney JR, Lewis JA. Printing mesoscale architectures. MRS Bull. 2015;40(11):943–950. doi:10.1557/mrs.2015.235
  • Kuo CN, Chua CK, Peng PC, et al. Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy. Virtual Phys Prototyp. 2020;15(1):120–129. doi:10.1080/17452759.2019.1698967
  • Gibbons GJ, Williams R, Purnell P, et al. 3D Printing of cement composites. Adv Appl Ceram. 2010;109(5):287–290. doi:10.1179/174367509(12472364600878
  • Farina I, Fabbrocino F, Carpentieri G, et al. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Composites Part B. 2016;90:76–85. doi:10.1016/j.compositesb.2015.12.006
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647. doi:10.1016/j.conbuildmat.2017.04.015
  • Panda B, Chandra Paul S, Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–149. doi:10.1016/j.matlet.2017.07.123
  • Malaeb Z, Hachem H, Tourbah A, et al. 3D concrete printing: machine and mix design. Int J Civ Eng Technol. 2015;6(6):14–22.
  • Zareiyan B, Khoshnevis B. Interlayer adhesion and strength of structures in Contour Crafting - effects of aggregate size,: extrusion rate, and layer thickness. Autom Constr. 2017;81:112–121. doi:10.1016/j.autcon.2017.06.013
  • Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017b;83:212–221. doi:10.1016/j.autcon.2017.08.019
  • Le TT, Austin SA, Lim S, et al. Hardened properties of high-performance printing concrete. Cem Concr Res. 2012;42(3):558–566. doi:10.1016/j.cemconres.2011.12.003
  • Xia M, Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater Des. 2016;110:382–390. doi:10.1016/j.matdes.2016.07.136
  • Panda B, Paul SC, Mohamed NAN, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement (Mahwah NJ). 2018;113:108–116. doi:10.1016/j.measurement.2017.08.051
  • Zhong J, Zhou G-X, He P-G, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon N Y. 2017;117:421–426. doi:10.1016/j.carbon.2017.02.102
  • Feng P, Meng X, Zhang H. Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials. Compos Struct. 2015;134:331–342. doi:10.1016/j.compstruct.2015.08.079
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–1928. doi:10.1007/s11665-014-0958-z
  • Fraternali F, Hernández-Nava E, Goodall R, et al. On the additive manufacturing,: post-tensioning and testing of bi-material tensegrity structures. Compos Struct. 2015;131:66–71. doi:10.1016/j.compstruct.2015.04.038
  • Hehr A, Dapino MJ. Interfacial shear strength estimates of NiTi–Al matrix composites fabricated via ultrasonic additive manufacturing. Composites Part B. 2015;77:199–208. doi:10.1016/j.compositesb.2015.03.005
  • Buchanan C, Matilainen V-P, Salminen A, et al. Structural performance of additive manufactured metallic material and cross-sections. J Constr Steel Res. 2017;136:35–48. doi:10.1016/j.jcsr.2017.05.002
  • Gutmann B, Köckinger M, Glotz G, et al. Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React Chem Eng. 2017;2(6):919–927. doi:10.1039/C7RE00176B
  • Dai D, Gu D, Poprawe R, et al. Influence of additive multilayer feature on thermodynamics,: stress and microstructure development during laser 3D printing of aluminum-based material. Sci Bull. 2017;62(11):779–787. doi:10.1016/j.scib.2017.05.007
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Xia M, Gu D, Yu G, et al. Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms. Sci Bull. 2016;61(13):1013–1022. doi:10.1007/s11434-016-1098-7
  • Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv Eng Mater. 2015;17(7):923–932. doi:10.1002/adem.201400524
  • Gardan J, Nguyen DC, Roucoules L, et al. Characterization of wood filament in additive deposition to study the mechanical behavior of reconstituted wood products. J Eng Fibers Fabr. 2016;11(4):155892501601100. doi:10.1177/155892501601100408
  • Henke K, Treml S. Wood based bulk material in 3D printing processes for applications in construction. Eur J Wood Wood Prod. 2012;71(1):139–141. doi:10.1007/s00107-012-0658-z
  • Kariz M, Sernek M, Kuzman MK. Use of wood powder and adhesive as a mixture for 3D printing. Eur J Wood Wood Prod. 2015;74(1):123–126. doi:10.1007/s00107-015-0987-9
  • Kam D, Layani M, BarkaiMinerbi S, et al. Additive manufacturing of 3D structures composed of wood materials. Adv Mater Technol. 2019;4(9):1900158. doi:10.1002/admt.201900158
  • Tao Y, Wang H, Li Z, et al. Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials (Basel). 2017;10(4):339. doi:10.3390/ma10040339
  • Le Duigou A, Castro M, Bevan R, et al. 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des. 2016;96:106–114. doi:10.1016/j.matdes.2016.02.018
  • Takagishi K, Umezu S. Development of the improving process for the 3D printed structure. Sci Rep. 2017;7(1). doi:10.1038/srep39852
  • Ning F, Cong W, Qiu J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B. 2015;80:369–378. doi:10.1016/j.compositesb.2015.06.013
  • Dakhli Z, Lafhaj Z. Experimental and numerical prototyping of a complex cement column formwork for construction. Archit Eng Design Manage. 2016;13(2):147–165. doi:10.1080/17452007.2016.1226745
  • Yang H, Lim JC, Liu Y, et al. Performance evaluation of ProJet multi-material jetting 3D printer. Virtual Phys Prototyp. 2017;12(1):95–103. doi:10.1080/17452759.2016.1242915
  • Lausic A, Bird A, Steeves CA, et al. Scale-dependent failure of stereolithographic polymer microtrusses in three-point bending. J Compos Mater. 2016;50:1739–1749. doi:10.1177/0021998315596369
  • Giordano RA, Wu BM, Borland SW, et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed. 1997;8(1):63–75. doi:10.1163/156856297(00588
  • Malek S, Raney JR, Lewis JA, et al. Lightweight 3D cellular composites inspired by balsa. Bioinspir Biomim. 2017;12(2):026014. doi:10.1088/1748-3190/aa6028
  • Maurath J, Willenbacher N. 3D printing of open-porous cellular ceramics with high specific strength. J Eur Ceram Soc. 2017;37(15):4833–4842. doi:10.1016/j.jeurceramsoc.2017.06.001
  • Hwa LC, Rajoo S, Noor AM, et al. Recent advances in 3D printing of porous ceramics: a review. Curr Opin Solid State Mater Sci. 2017;21(6):323–347. doi:10.1016/j.cossms.2017.08.002
  • Eckel ZC, Zhou C, Martin JH, et al. Additive manufacturing of polymer-derived ceramics. Science. 2016;351(6268):58–62. doi:10.1126/science.aad2688
  • Yin X, Travitzky N, Greil P. Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3-Al2O3 composites. J Am Ceram Soc. 2007;90(7):2128–2134. doi:10.1111/j.1551-2916.2007.01668.x
  • Haussener S, D’Angelo C, Gianella S, et al. Cellular ceramics produced by rapid prototyping and replication. Mater Lett. 2012;80:95–98. doi:10.1016/j.matlet.2012.04.050
  • Wang W, Gao X, Zhang L, et al. Large-scale material extrusion-based additive manufacturing of short carbon fibre-reinforced silicon carbide ceramic matrix composite preforms. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2245801
  • Wilhelm S, Curbach M. Review of possible mineral materials and production techniques for a building material on the moon. Struct Concr. 2014;15(3):419–428. doi:10.1002/suco.201300088
  • Zhang J, Khoshnevis B. Optimal machine operation planning for construction by Contour Crafting. Autom Constr. 2013;29:50–67. doi:10.1016/j.autcon.2012.08.006
  • Hwang D, Khoshnevis B. An innovative construction process-contour crafting (CC). Proceedings of the 22nd International Symposium on Automation and Robotics in Construction; 2005. doi:10.22260/isarc2005/0004
  • Gardner L, Kyvelou P, Herbert G, et al. Testing and initial verification of the world’s first metal 3D printed bridge. J Constr Steel Res. 2020;172:106233. doi:10.1016/j.jcsr.2020.106233
  • Gammon K. Why 3-D printed homes may save lives as well as the environment. NBC News. 2017 Mar 9. Available from: https://www.nbcnews.com/mach/innovation/why-3-d-printed-homes-may-save-lives-well-environment-n730606
  • Huang S, Xu W, Li Y. The impacts of fabrication systems on 3D concrete printing building forms. Front Archit Res. 2022;11:653–669. doi:10.1016/j.foar.2022.03.004
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art,: challenges and opportunities. Autom Constr. 2016;72:347–366. doi:10.1016/j.autcon.2016.08.026
  • Barnett E, Gosselin C. Large-scale 3D printing with a cable-suspended robot. Addit Manuf. 2015;7:27–44. doi:10.1016/j.addma.2015.05.001
  • Bosscher P, Williams RL, Bryson LS, et al. Cable-suspended robotic contour crafting system. Autom Constr. 2007;17(1):45–55. doi:10.1016/j.autcon.2007.02.011
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225. doi:10.1080/17452759.2016.1209867
  • Bos F, Ahmed Z, Jutinov E, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel). 2017;10(11):1314. doi:10.3390/ma10111314
  • Diagne M, Bekiaris-Liberis N, Krstic M. Time- and state-dependent input delay-compensated bang-bang control of a screw extruder for 3D printing. Int J Robust Nonlinear Control. 2017;27(17):3727–3757. doi:10.1002/rnc.3761
  • Valkenaers H, Vogeler F, Ferraris E, et al. A novel approach to additive manufacturing: Screw extrusion 3D-printing. Proceedings of the 10th International Conference on Multi-Material Micro Manufacture; 2013; San Sebastian, Spain. doi:10.3850/978-981-07-7247-5-359
  • Zein I, Hutmacher DW, Tan KC, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–1185. doi:10.1016/s0142-9612(01)00232-0
  • Huang W, Zhang X, Wu Q, et al. Fabrication of HA/β-TCP scaffolds based on micro-syringe extrusion system. Rapid Prototyp J. 2013;19(5):319–326. doi:10.1108/rpj-01-2012-0004
  • Bekker ACM, Verlinden JC. Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J Cleaner Prod. 2018;177:438–447. doi:10.1016/j.jclepro.2017.12.148
  • Busachi A, Erkoyuncu J, Colegrove P, et al. Designing a waam based manufacturing system for defence applications. Procedia CIRP. 2015;37:48–53. doi:10.1016/j.procir.2015.08.085
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232. doi:10.1617/s11527-012-9828-z
  • Zhang C, Nerella VN, Krishna A, et al. Mix design concepts for 3D printable concrete: a review. Cem Concr Compos. 2021;122:104155. doi:10.1016/j.cemconcomp.2021.104155
  • Hager I, Golonka A, Putanowicz R. 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng. 2016;151:292–299. doi:10.1016/j.proeng.2016.07.357
  • Lao W, Li M, Wong TN, et al. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual Phys Prototyp. 2020;15(2):178–193. doi:10.1080/17452759.2020.1713580
  • Lehmann T, Rose D, Ranjbar E, et al. Large-scale metal additive manufacturing: a holistic review of the state of the art and challenges. Int Mater Rev. 2021;67(4):410–459. doi:10.1080/09506608.2021.1971427
  • Li Y, Meng L, Li M, et al. Allocation and scheduling of deposition paths in a layer for multi-robot coordinated wire and arc additive manufacturing of large-scale parts. Virtual Phys Prototyp. 2024;19(1):e2300680. doi:10.1080/17452759.2023.2300680
  • Poudel L, Zhou W, Sha Z. Resource-constrained scheduling for multi-robot cooperative three-dimensional printing. J Mech Des. 2021;143(7):072002. doi:10.1115/1.4050380
  • Shen H, Pan L, Qian J. Research on large-scale additive manufacturing based on multi-robot collaboration technology. Addit Manuf. 2019;30:100906. doi:10.1016/j.addma.2019.100906
  • Buchanan C, Gardner L. Metal 3D printing in construction: a review of methods,: research, applications, opportunities and challenges. Eng Struct. 2019;180:332–348. doi:10.1016/j.engstruct.2018.11.045
  • Burger J, Huber T, Lloret-Fritschi E, et al. Design and fabrication of optimised ribbed concrete floor slabs using large scale 3D printed formwork. Autom Constr. 2022;144:104599. doi:10.1016/j.autcon.2022.104599
  • Vantyghem G, De Corte W, Shakour E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr. 2020;112:103084. doi:10.1016/j.autcon.2020.103084
  • Anton A, Reiter L, Wangler T, et al. A 3D concrete printing prefabrication platform for bespoke columns. Autom Constr. 2021;122:103467. doi:10.1016/j.autcon.2020.103467
  • Xiao J, Ji G, Zhang Y, et al. Large-scale 3D printing concrete technology: Current status and future opportunities. Cem Concr Compos. 2021;122:104115. doi:10.1016/j.cemconcomp.2021.104115
  • Keating SJ, Leland JC, Cai L, et al. Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci Rob. 2017;2(5):eaam8986. doi:10.1126/scirobotics.aam8986
  • Chen S, Zuo Z. Shanghai Construction Group builds China’s first on-site 3D printed habitable and deliverable two-story building, which is a national key R&D program demonstration project. Weixin Official Acc Platform. 2022 Aug 22. Available from: https://mp.weixin.qq.com/s/7jGrrEZMYm0dD0k3iuoCRA
  • Chen X, Lu C, Gong M, et al. Research and application of 3D printing technology for super large-scale polymer composite material. Constr Technol. 2021;50(21):41–45, 63. doi:10.7672/sgjs2021210041
  • Pan D, Zhu Y. China’s first on-site 3D printing deliverable two-story building - National project demonstration project. Sohu; Jiangsu City Channel. 2022 Aug 11. Available from: https://www.sohu.com/a/575952916_120144890
  • Ota H, Emaminejad S, Gao Y, et al. Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv Mater Technol. 2016;1(1):1600013. doi:10.1002/admt.201600013
  • Leigh SJ, Bradley RJ, Purssell CP, et al. A simple,: low-cost conductive composite material for 3D printing of electronic sensors. PLoS One. 2012;7(11):e49365. doi:10.1371/journal.pone.0049365
  • Kong Y, Gupta MK, Johnson BW, et al. 3D printed bionic nanodevices. Nano Today. 2016;11(3):330–350. doi:10.1016/j.nantod.2016.04.007
  • Li Q, Kulikowski J, Doan D, et al. Mechanical nanolattices printed using nanocluster-based photoresists. Science. 2022;378(6621):768–773. doi:10.1126/science.abo6997
  • Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy. 2018;3:301–309. doi:10.1038/s41560-017-0071-2
  • Song JH, Kim Y-T, Cho S, et al. Surface-embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures. Adv Mater. 2017;29(43):1702625. doi:10.1002/adma.201702625
  • Rahman MT, Moser R, Zbib HM, et al. 3D printed high performance strain sensors for high temperature applications. J Appl Phys. 2018;123(2):024501. doi:10.1063/1.4999076
  • Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–6312. doi:10.1002/adma.201400334
  • Wallin TJ, Pikul J, Shepherd RF. 3D printing of soft robotic systems. Nat Rev Mater. 2018;3(6):84–100. doi:10.1038/s41578-018-0002-2
  • Miner GL, Ham JM, Kluitenberg GJ. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric For Meteorol. 2017;246:86–97. doi:10.1016/j.agrformet.2017.06.012
  • Khosravani MR, Reinicke T. 3D-printed sensors: current progress and future challenges. Sens Actuators, A. 2020;305:111916. doi:10.1016/j.sna.2020.111916
  • Windl R, Abert C, Bruckner F, et al. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification. AIP Adv. 2017;7(11):115121. doi:10.1063/1.5004499
  • Areir M, Xu Y, Harrison D, et al. 3D printing of highly flexible supercapacitor designed for wearable energy storage. Mater Sci Eng B. 2017;226:29–38. doi:10.1016/j.mseb.2017.09.004
  • Ruiz-Morales JC, Hernández-Rodríguez EM, Acosta-Mora P, et al. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components. Bol Soc Esp Ceram Vidrio. 2014;53(5):213–216. doi:10.3989/cyv.252014
  • McCoul D, Rosset S, Schlatter S, et al. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators. Smart Mater Struct. 2017;26(12):125022. doi:10.1088/1361-665X/aa9695
  • Lee CS, Taylor A, Beirne S, et al. 3D-Printed conical arrays of TiO2 electrodes for enhanced photoelectrochemical water splitting. Adv Energy Mater. 2017;7(21):1701060–1701060. doi:10.1002/aenm.201701060
  • Garra P, Graff B, Morlet-Savary F, et al. Charge transfer complexes as pan-scaled photoinitiating systems: from 50 μm 3D printed polymers at 405 nm to extremely deep photopolymerization (31 cm). Macromolecules. 2018;51(1):57–70. doi:10.1021/acs.macromol.7b02185
  • Weisgrab G, Ovsianikov A, Costa PF. Functional 3D printing for microfluidic chips. Adv Mater Technol. 2019;4:1900275. doi:10.1002/admt.201900275
  • Bartlett NW, Tolley MT, Overvelde JTB, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science. 2015;349(6244):161–165. doi:10.1126/science.aab0129
  • Carrico JD, Traeden NW, Aureli M, et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater Struct. 2015;24:125021. doi:10.1088/0964-1726/24/12/125021
  • Larson NM, Mueller J, Chortos A, et al. Rotational multimaterial printing of filaments with subvoxel control. Nature. 2023;613(7945):682–688. doi:10.1038/s41586-022-05490-7
  • Mueller J, Raney JR, Shea K, et al. Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv Mater. 2018;30(12):1705001. doi:10.1002/adma.201705001
  • Hergel J, Lefebvre S. Clean color: improving multi-filament 3D prints. Comput Graph Forum. 2014;33(2):469–478. doi:10.1111/cgf.12318
  • Liu X, Yuk H, Lin S, et al. 3D Printing of living responsive materials and devices. Adv Mater. 2017;30(4):1704821. doi:10.1002/adma.201704821
  • Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371–378. doi:10.1038/nature21003
  • Skylar-Scott MA, Mueller J, Visser CW, et al. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 2019;575(7782):330–335. doi:10.1038/s41586-019-1736-8
  • Jeong H, Cui Y, Tentzeris MM, et al. Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber. Addit Manuf. 2020;35:101405. doi:10.1016/j.addma.2020.101405
  • Shangguan H, Kang J, Deng C, et al. 3D-printed shell-truss sand mold for aluminum castings. J Mater Process Technol. 2017;250:247–253. doi:10.1016/j.jmatprotec.2017.05.010
  • Anelli S, Rosa M, Baiutti F, et al. Hybrid-3D printing of symmetric solid oxide cells by inkjet printing and robocasting. Addit Manuf. 2022;51:102636. doi:10.1016/j.addma.2022.102636
  • Lloret E, Shahab AR, Linus M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Comput Aided Des. 2015;60:40–49. doi:10.1016/j.cad.2014.02.011
  • Furet B, Poullain P, Garnier S. 3D printing for construction based on a complex wall of polymer-foam and concrete. Addit Manuf. 2019;28:58–64. doi:10.1016/j.addma.2019.04.002
  • Kostakis V, Papachristou M. Commons-based peer production and digital fabrication: the case of a RepRap-based, lego-built 3D printing-milling machine. Telemat Inform. 2014;31(3):434–443. doi:10.1016/j.tele.2013.09.006
  • Li L, Haghighi A, Yang Y. A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J Manuf Process. 2018;33:150–160. doi:10.1016/j.jmapro.2018.05.008
  • Karunakaran KP, Suryakumar S, Pushpa V, et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf. 2010;26(5):490–499. doi:10.1016/j.rcim.2010.03.008
  • Karunakaran KP, Bernard A, Suryakumar S, et al. Rapid manufacturing of metallic objects. Rapid Prototyp J. 2012;18(4):264–280. doi:10.1108/13552541211231644
  • Newman ST, Zhu Z, Dhokia V, et al. Process planning for additive and subtractive manufacturing technologies. CIRP Ann. 2015;64(1):467–470. doi:10.1016/j.cirp.2015.04.109
  • Flynn JM, Shokrani A, Newman ST, et al. Hybrid additive and subtractive machine tools – Research and industrial developments. Int J Mach Tools Manuf. 2016;101:79–101. doi:10.1016/j.ijmachtools.2015.11.007
  • Marchment T, Sanjayan J. Mesh reinforcing method for 3D Concrete Printing. Autom Constr. 2020;109:102992. doi:10.1016/j.autcon.2019.102992
  • Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater. 2017;29(40):1703817. doi:10.1002/adma.201703817
  • Macdonald E, Salas R, Espalin D, et al. 3D Printing for the rapid prototyping of structural electronics. IEEE Access. 2014;2:234–242. doi:10.1109/ACCESS.2014.2311810
  • Giftthaler M, Sandy T, Dörfler K, et al. Mobile robotic fabrication at 1:1 scale: the In situ Fabricator. Constr Rob. 2017;1:3–14. doi:10.1007/s41693-017-0003-5
  • Sullivan KT, Zhu C, Duoss EB, et al. Controlling material reactivity using architecture. Adv Mater. 2016;28(10):1934–1939. doi:10.1002/adma.201504286
  • Mechtcherine V, Michel A, Liebscher M, et al. Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives. Autom Constr. 2020;110:103002. doi:10.1016/j.autcon.2019.103002
  • Yung WKC, Sun B, Meng Z, et al. Additive and photochemical manufacturing of copper. Sci Rep. 2016;6; doi:10.1038/srep39584
  • González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: materials,: methodologies, and biomedical applications. Prog Polym Sci. 2019;94:57–116. doi:10.1016/j.progpolymsci.2019.03.001
  • Tibbits S. 4D printing: multi-material shape change. Archit Des. 2014;84(1):116–121. doi:10.1002/ad.1710
  • Khoo ZX, Teoh JEM, Liu Y, et al. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp. 2015;10(3):103–122. doi:10.1080/17452759.2015.1097054
  • Lee J, Kim H-C, Choi J-W, et al. A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf Green Technol. 2017;4(3):373–383. doi:10.1007/s40684-017-0042-x
  • Ding Z, Yuan C, Peng X, et al. Direct 4D printing via active composite materials. Sci Adv. 2017;3(4):e1602890. doi:10.1126/sciadv.1602890
  • Zafar MQ, Zhao H. 4D printing: future insight in additive manufacturing. Met Mater Int. 2019;26:564–585. doi:10.1007/s12540-019-00441-w
  • Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp. 2016;11(4):249–262. doi:10.1080/17452759.2016.1198630
  • Kuang X, Roach DJ, Wu J, et al. Advances in 4D printing: materials and applications. Adv Funct Mater. 2018;29(2):1805290. doi:10.1002/adfm.201805290
  • Momeni F, Mehdi Hassani M, N S, et al. A review of 4D printing. Mater Des. 2017;122:42–79. doi:10.1016/j.matdes.2017.02.068
  • Benyahia K, Seriket H, Prod’hon R, et al. A computational design approach for multi-material 4D printing based on interlocking blocks assembly. Addit Manuf. 2022;58:102993. doi:10.1016/j.addma.2022.102993
  • Yuan C, Wang F, Ge Q. Multimaterial direct 4D printing of high stiffness structures with large bending curvature. Extreme Mech Lett. 2021;42:101122. doi:10.1016/j.eml.2020.101122
  • Boley JW, van Rees WM, Lissandrello C, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci USA. 2019;116(42):20856–20862. doi:10.1073/pnas.1908806116
  • Bodaghi M, Damanpack AR, Liao WH. Adaptive metamaterials by functionally graded 4D printing. Mater Des. 2017;135:26–36. doi:10.1016/j.matdes.2017.08.069
  • Zeng C, Liu L, Bian W, et al. 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance. Composites Part B. 2020;194:108034. doi:10.1016/j.compositesb.2020.108034
  • Sydney Gladman A, Matsumoto EA, Nuzzo RG, et al. Biomimetic 4D printing. Nat Mater. 2016;15(4):413–418. doi:10.1038/nmat4544
  • Zolfagharian A, Kaynak A, Kouzani A. Closed-loop 4D-printed soft robots. Mater Des. 2020;188:108411. doi:10.1016/j.matdes.2019.108411
  • Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018;558(7709):274–279. doi:10.1038/s41586-018-0185-0
  • Hoa S, Abdali M, Jasmin A, et al. Development of a new flexible wing concept for Unmanned Aerial Vehicle using corrugated core made by 4D printing of composites. Compos Struct. 2022;290:115444. doi:10.1016/j.compstruct.2022.115444
  • Wu W, Zhou Y, Liu Q, et al. Metallic 4D printing of laser stimulation. Adv Sci. 2023;10(12):2206486–2206486. doi:10.1002/advs.202206486
  • Mitchell A, Lafont U, Hołyńska M, et al. Additive manufacturing — a review of 4D printing and future applications. Addit Manuf. 2018;24:606–626. doi:10.1016/j.addma.2018.10.038
  • Tahouni Y, Cheng T, Lajewski S, et al. Codesign of biobased cellulose-filled filaments and mesostructures for 4D printing humidity responsive smart structures. 3D Printing Addit Manuf. 2022;10(1). doi:10.1089/3dp.2022.0061
  • Yi H. 4D-printed parametric façade in architecture: prototyping a self-shaping skin using programmable two-way shape memory composite (TWSMC). Eng Constr Archit Manage. 2021;29(10):4132–4152. doi:10.1108/ecam-05-2021-0428
  • Yi H, Kim Y. Prototyping of 4D-printed self-shaping building skin in architecture: design,: fabrication, and investigation of a two-way shape memory composite (TWSMC) façade panel. J Building Eng. 2021;43:103076. doi:10.1016/j.jobe.2021.103076
  • Lanzetta M, Sachs E. Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyp J. 2003;9(3):157–166. doi:10.1108/13552540310477463
  • Wu W, Jiang J, Jiang H, et al. Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Mater Lett. 2018;220:317–320. doi:10.1016/j.matlet.2018.03.048
  • Todd I. No more tears for metal 3D printing. Nature. 2017;549(7672):342–343. doi:10.1038/549342a
  • Zhang K, Meng Q, Qu Z, et al. A review of defects in vat photopolymerization additive-manufactured ceramics: characterization,: control, and challenges. J Eur Ceram Soc. 2024;44(3):1361–1384. doi:10.1016/j.jeurceramsoc.2023.10.067
  • Feng X, Yang Z, Rostom SSH, et al. Reinforcing 3D printed acrylonitrile butadiene styrene by impregnation of methacrylate resin and cellulose nanocrystal mixture: Structural effects and homogeneous properties. Mater Des. 2018;138:62–70. doi:10.1016/j.matdes.2017.10.050
  • Li Z, Wang L, Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Composites Part B. 2020;187:107796. doi:10.1016/j.compositesb.2020.107796
  • Breseghello L, Naboni R. Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Addit Manuf. 2022;56:102872. doi:10.1016/j.addma.2022.102872
  • Ladd C, So J-H, Muth J, et al. 3D Printing of free standing liquid metal microstructures. Adv Mater. 2013;25(36):5081–5085. doi:10.1002/adma.201301400
  • Karl D, Duminy T, Lima P, et al. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronaut. 2020;174:241–253. doi:10.1016/j.actaastro.2020.04.064
  • Tang S, Yang L, Li G, et al. 3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control. Addit Manuf. 2019;28:546–553. doi:10.1016/j.addma.2019.05.034
  • Calneryte D, Barauskas R, Milasiene D, et al. Multi-scale finite element modeling of 3D printed structures subjected to mechanical loads. Rapid Prototyp J. 2018;24(1):177–187. doi:10.1108/RPJ-05-2016-0074
  • Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat Nanotechnol. 2011;6(7):402–407. doi:10.1038/nnano.2011.82
  • Yang H, Leow WR, Wang T, et al. 3D printed photoresponsive devices based on shape memory composites. Adv Mater. 2017;29(33):1701627. doi:10.1002/adma.201701627
  • Smith TM, Kantzos CA, Zarkevich NA, et al. A 3D printable alloy designed for extreme environments. Nature. 2023: 1–6. doi:10.1038/s41586-023-05893-0
  • Dimas LS, Bratzel GH, Eylon I, et al. Tough composites inspired by mineralized natural materials: computation, 3D printing, and Testing. Adv Funct Mater. 2013;23(36):4629–4638. doi:10.1002/adfm.201300215
  • Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun. 2015;6(1). doi:10.1038/ncomms9643
  • Gu D. Materials creation adds new dimensions to 3D printing. Sci Bull. 2016;61(22):1718–1722. doi:10.1007/s11434-016-1191-y
  • Bates SRG, Farrow IR, Trask RS. 3D printed polyurethane honeycombs for repeated tailored energy absorption. Mater Des. 2016;112:172–183. doi:10.1016/j.matdes.2016.08.062
  • Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature. 2017;543(7646):533–537. doi:10.1038/nature21075
  • Chen Y, Li T, Jia Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater Des. 2018;137:226–234. doi:10.1016/j.matdes.2017.10.028
  • Lipton JI, Lipson H. 3D printing variable stiffness foams using viscous thread instability. Sci Rep. 2016;6:29996. doi:10.1038/srep29996
  • Wadley HNG. Multifunctional periodic cellular metals. Philos Trans R Soc A. 2005;364(1838):31–68. doi:10.1098/rsta.2005.1697
  • Mansouri MR, Montazerian H, Schmauder S, et al. 3D-printed multimaterial composites tailored for compliancy and strain recovery. Compos Struct. 2018;184:11–17. doi:10.1016/j.compstruct.2017.09.049
  • Jiang Z, Diggle B, Tan ML, et al. Extrusion 3D printing of polymeric materials with advanced properties. Adv Sci. 2020;7(17):2001379. doi:10.1002/advs.202001379
  • Saleh MS, Hu C, Panat R. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci Adv. 2017;3(3):e1601986. doi:10.1126/sciadv.1601986
  • Wang Y, Zhang L, Daynes S, et al. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater Des. 2018;142:114–123. doi:10.1016/j.matdes.2018.01.011
  • Fee C, Nawada S, Dimartino S. 3D printed porous media columns with fine control of column packing morphology. J Chromatogr, A. 2014;1333:18–24. doi:10.1016/j.chroma.2014.01.043
  • Bian B, Shi D, Cai X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy. 2018;44:174–180. doi:10.1016/j.nanoen.2017.11.070
  • Qin Z, Jung GS, Kang MJ, et al. The mechanics and design of a lightweight three-dimensional graphene assembly. Sci Adv. 2017;3(1):e1601536. doi:10.1126/sciadv.1601536
  • Yang Y, Chen Z, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater. 2017;29(11):1605750–1605750. doi:10.1002/adma.201605750
  • Qin Z, Compton BG, Lewis JA, et al. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat Commun. 2015;6:1. doi:10.1038/ncomms8038
  • Juračka D, Katzer J, Kobaka J, et al. Concept of a 3D-printed voronoi egg-shaped habitat for permanent lunar outpost. Appl Sci. 2023;13(2):1153–1153. doi:10.3390/app13021153
  • Chen L, Tang X, Xie P, et al. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem Mater. 2018;30(3):799–806. doi:10.1021/acs.chemmater.7b04313
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545). doi:10.1126/science.abg1487
  • Holshouser C, Newell C, Palas S, et al. Out of bounds additive manufacturing. Adv Mater Process. 2013;171(3):15–19.
  • Xu W, Huang S, Han D, et al. Toward automated construction: the design-to-printing workflow for a robotic in-situ 3D printed house. Case Stud Constr Mater. 2022;17:e01442. doi:10.1016/j.cscm.2022.e01442
  • Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett. 2013;103(13):131901. doi:10.1063/1.4819837
  • Pearce JM. Building research equipment with free,: open-source hardware. Science. 2012;337(6100):1303–1304. doi:10.1126/science.1228183
  • Dörfler K, Dielemans G, Lachmayer L, et al. Additive manufacturing using mobile robots: opportunities and challenges for building construction. Cem Concr Res. 2022;158:106772. doi:10.1016/j.cemconres.2022.106772
  • Keating S, Oxman N. Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf. 2013;29(6):439–448. doi:10.1016/j.rcim.2013.05.001
  • Khoshnevis B, Yuan X, Zahiri B, et al. Construction by Contour Crafting using sulfur concrete with planetary applications. Rapid Prototyp J. 2016;22(5):848–856. doi:10.1108/RPJ-11-2015-0165
  • Gong J, Zuo Z, et al. Three-demensional scanning digital construction. Beijing: China Architecture & Building Press; 2020, pp. 1–207.
  • Salet TAM, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp. 2018;13(3):222–236. doi:10.1080/17452759.2018.1476064
  • Duballet R, Baverel O, Dirrenberger J. Classification of building systems for concrete 3D printing. Autom Constr. 2017;83:247–258. doi:10.1016/j.autcon.2017.08.018
  • Carneau P, Mesnil R, Roussel N, et al. Additive manufacturing of cantilever – from masonry to concrete 3D printing. Autom Constr. 2020;116:103184. doi:10.1016/j.autcon.2020.103184
  • Hildreth OJ, Nassar AR, Chasse KR, et al. Dissolvable metal supports for 3D direct metal printing. 3D Printing Addit Manuf. 2016;3(2):90–97. doi:10.1089/3dp.2016.0013
  • Mechtcherine V, Nerella VN, Will F, et al. Large-scale digital concrete construction – CONPrint3D concept for on-site,: monolithic 3D-printing. Autom Constr. 2019;107:102933. doi:10.1016/j.autcon.2019.102933
  • Nan IC, Patterson C, Pedreschi R. Digital materialization: additive and robotical manufacturing with clay and silicone. 34th ECAADe Conference (ECAADe); 2016. doi:10.52842/conf.ecaade.2016.1.345
  • Zuo Z, Huang Y, Pan X, et al. Experimental research on remote real-time monitoring of concrete strength for highrise building machine during construction. Measurement (Mahwah NJ). 2021;178:109430. doi:10.1016/j.measurement.2021.109430
  • Hunt, G., Mitzalis, F., Alhinai, T., Hooper, P. A., & Kovac, M. 3D printing with flying robots. 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014; Hong-Kong: China. p. 4493–4499. doi:10.1109/ICRA.2014.6907515
  • Zhang K, Chermprayong P, Xiao F, et al. Aerial additive manufacturing with multiple autonomous robots. Nature. 2022;609(7928):709–717. doi:10.1038/s41586-022-04988-4
  • Zuo Z, Gong J, Huang Y, et al. Application of 3D laser scanning and printing in geotechnical construction. The 1st International Symposium on Soil Dynamics and Geotechnical Sustainability; 2016; ISBN: 978-988-14032-4-7.
  • Kim D, Gil J-M. Reliable and fault-tolerant software-defined network operations scheme for remote 3D printing. J Electron Mater. 2015;44(3):804–814. doi:10.1007/s11664-014-3548-9
  • Luo X, Zhang L, Ren L, et al. A dynamic and static data based matching method for cloud 3D printing. Robot Comput Integr Manuf. 2020;61:101858–101858. doi:10.1016/j.rcim.2019.101858
  • Cui J, Ren L, Mai J, et al. 3D Printing in the context of cloud manufacturing. Robot Comput Integr Manuf. 2022;74:102256. doi:10.1016/j.rcim.2021.102256
  • Bazli M, Ashrafi H, Rajabipour A, et al. 3D printing for remote housing: benefits and challenges. Autom Constr. 2023;148:104772. doi:10.1016/j.autcon.2023.104772
  • Wu Q, Xie N, Zheng S, et al. Online order scheduling of multi 3D printing tasks based on the additive manufacturing cloud platform. J Manuf Syst. 2022;63:23–34. doi:10.1016/j.jmsy.2022.02.007
  • Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS); 2017; Long Beach, CA, USA. p. 6000–6010. ISBN: 9781510860964.
  • Bouncken R, Barwinski R. Shared digital identity and rich knowledge ties in global 3D printing—A drizzle in the clouds? Global Strategy J. 2020;11(1). doi:10.1002/gsj.1370
  • Debroy T, Zhang W, Turner J, et al. Building digital twins of 3D printing machines. Scr Mater. 2017;135:119–124. doi:10.1016/j.scriptamat.2016.12.005
  • Perrot A, Pierre A, Nerella VN, et al. From analytical methods to numerical simulations: a process engineering toolbox for 3D concrete printing. Cem Concr Compos. 2021;122:104164. doi:10.1016/j.cemconcomp.2021.104164
  • Bader C, Kolb D, Weaver JC, et al. Making data matter: voxel printing for the digital fabrication of data across scales and domains. Sci Adv. 2018;4(5). doi:10.1126/sciadv.aas8652
  • Nerella VN, Näther M, Iqbal A, et al. Inline quantification of extrudability of cementitious materials for digital construction. Cem Concr Compos. 2019;95:260–270. doi:10.1016/j.cemconcomp.2018.09.015
  • Nguyen-Van V, Li S, Liu J, et al. Modelling of 3D concrete printing process: a perspective on material and structural simulations. Addit Manuf. 2023;61:103333. doi:10.1016/j.addma.2022.103333
  • Garg A, Lam JSL, Savalani MM. A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Technol. 2015;80:555–565. doi:10.1007/s00170-015-6989-2
  • Bukkapatnam S, Clark B. Dynamic modeling and monitoring of contour crafting—an extrusion-based layered manufacturing process. J Manuf Sci Eng. 2007;129(1):135–142. doi:10.1115/1.2375137
  • van den Heever M, Bester F, Kruger J, et al. Numerical modelling strategies for reinforced 3D concrete printed elements. Addit Manuf. 2022;50:102569. doi:10.1016/j.addma.2021.102569
  • Gannarapu A, Dutta P, Gozen BA. Prediction of steady-state freeze front position during 3D printing of microstructures. Int J Heat Mass Transfer. 2017;115:743–753. doi:10.1016/j.ijheatmasstransfer.2017.07.092
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Xia M, Nematollahi B, Sanjayan J. Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom Constr. 2019;101:179–189. doi:10.1016/j.autcon.2019.01.013
  • Davtalab O, Kazemian A, Yuan X, et al. Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. J Intell Manuf. 2020;33. doi:10.1007/s10845-020-01684-w
  • Petsiuk A, Pearce JM. Towards smart monitored AM: Open source in-situ layer-wise 3D printing image anomaly detection using histograms of oriented gradients and a physics-based rendering engine. Addit Manuf. 2022;52:102690. doi:10.1016/j.addma.2022.102690
  • Goh GD, Hamzah NMB, Yeong WY. Anomaly detection in fused filament fabrication using machine learning. 3D Printing Addit Manuf. 2022;10(3):428–437. doi:10.1089/3dp.2021.0231
  • Jin Z, Zhang Z, Shao X, et al. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng. 2021;9(7):3945–3952. doi:10.1021/acsbiomaterials.0c01761
  • Ma G, Wang L. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front Struct Civ Eng. 2017;12(3):382–400. doi:10.1007/s11709-017-0430-x
  • Wolfs RJM, Bos FP, Salet TAM. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete. Constr Build Mater. 2018b;181:447–454. doi:10.1016/j.conbuildmat.2018.06.060
  • Hou S, Duan Z, Xiao J, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater. 2021;273:121745. doi:10.1016/j.conbuildmat.2020.121745
  • Aycock KI, Hariharan P, Craven BA. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp Fluids. 2017;58(11). doi:10.1007/s00348-017-2403-1
  • Kazemian A, Yuan X, Davtalab O, et al. Computer vision for real-time extrusion quality monitoring and control in robotic construction. Autom Constr. 2019;101:92–98. doi:10.1016/j.autcon.2019.01.022
  • Santana L, Lino Alves J, da Costa Sabino Netto A. A study of parametric calibration for low cost 3D printing: seeking improvement in dimensional quality. Mater Des. 2017;135:159–172. doi:10.1016/j.matdes.2017.09.020
  • Silva DN, Gerhardt de Oliveira M, Meurer E, et al. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Cranio Maxillofac Surg. 2008;36(8):443–449. doi:10.1016/j.jcms.2008.04.003
  • Parsazadeh M, Sharma S, Dahotre N. Towards the next generation of machine learning models in additive manufacturing: a review of process dependent material evolution. Prog Mater Sci. 2023;135:101102–101102. doi:10.1016/j.pmatsci.2023.101102
  • Qi X, Chen G, Li Y, et al. Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering. 2019;5(4):721–729. doi:10.1016/j.eng.2019.04.012
  • Werfel J, Petersen K, Nagpal R. Designing collective behavior in a termite-inspired robot construction team. Science. 2014;343(6172):754–758. doi:10.1126/science.1245842
  • Zhu Z, Ng DWH, Park HS, et al. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater. 2021;6:27–47. doi:10.1038/s41578-020-00235-2
  • Tao Y, Ren Q, Vantyghem G, et al. Extending 3D concrete printing to hard rock tunnel linings: Adhesion of fresh cementitious materials for different surface inclinations. Autom Constr. 2023;149:104787–104787. doi:10.1016/j.autcon.2023.104787
  • Mazhoud B, Perrot A, Picandet V, et al. Underwater 3D printing of cement-based mortar. Constr Build Mater. 2019;214:458–467. doi:10.1016/j.conbuildmat.2019.04.134
  • Tönissen DD, Schlicher L. Using 3D-printing in disaster response: the two-stage stochastic 3D-printing knapsack problem. Comput Oper Res. 2021;133:105356. doi:10.1016/j.cor.2021.105356
  • Isachenkov M, Chugunov S, Akhatov I, et al. Regolith-based additive manufacturing for sustainable development of lunar infrastructure – An overview. Acta Astronaut. 2021;180:650–678. doi:10.1016/j.actaastro.2021.01.005
  • Yashar M, Michealsen P, Hammond B, et al. Building information modeling (BIM) workflows for construction sequencing and 4D-planning of 3D-printed ISRU surface habitats. 17th Biennial International Conference on Engineering,: Science, Construction, and Operations in Challenging Environments; 2021. doi:10.1061/9780784483374.128
  • Troemner M, Ramyar E, Meehan J, et al. A 3D-printing centered approach to mars habitat architecture and fabrication. J Aerosp Eng. 2022;35(1):04021109. doi:10.1061/(ASCE)AS.1943-5525.0001359
  • Li H, Meng H, Lan M, et al. Development of a novel material and casting method for in situ construction on Mars. Powder Technol. 2021;390:219–229. doi:10.1016/j.powtec.2021.05.054
  • Wu W, Geng P, Li G, et al. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed peek and a comparative mechanical study between PEEK and ABS. Materials (Basel). 2015;8(9):5834–5846. doi:10.3390/ma8095271
  • Zhang Y, Zhang F, Yan Z, et al. Printing,: folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater. 2017;2. doi:10.1038/natrevmats.2017.19
  • Liu S, Li Y, Li N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater Des. 2018;137:235–244. doi:10.1016/j.matdes.2017.10.007
  • Wolfs RJM, Bos FP, Salet TAM. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing. Cem Concr Res. 2018;106:103–116. doi:10.1016/j.cemconres.2018.02.001