254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A computationally efficient thermo-mechanical model with temporal acceleration for prediction of residual stresses and deformations in WAAM

, &
Article: e2349683 | Received 29 Feb 2024, Accepted 25 Apr 2024, Published online: 15 May 2024

References

  • Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process. 2018;35:127–139. doi: 10.1016/j.jmapro.2018.08.001
  • Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465–481. doi: 10.1007/s00170-015-7077-3
  • Omiyale B, Olugbade T, Abioye T, et al. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review. Mater Sci Technol. 2022;38:391–408. doi: 10.1080/02670836.2022.2045549
  • Chaturvedi M, Scutelnicu E, Rusu CC, et al. Wire arc additive manufacturing: review on recent findings and challenges in industrial applications and materials characterization. Metals (Basel). 2021;11:939. doi: 10.3390/met11060939
  • Szost BA, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Des. 2016;89:559–567. doi: 10.1016/j.matdes.2015.09.115
  • Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol. 2013;213:1782–1791. doi: 10.1016/j.jmatprotec.2013.04.012
  • Sun J, Hensel J, Köhler M, et al. Residual stress in wire and arc additively manufactured aluminum components. J Manuf Process. 2021;65:97–111. doi: 10.1016/j.jmapro.2021.02.021
  • Abusalma H, Eisazadeh H, Hejripour F, et al. Parametric study of residual stress formation in wire and arc additive manufacturing. J Manuf Process. 2022;75:863–876. doi: 10.1016/j.jmapro.2022.01.043
  • Francois MM, Sun A, King WE, et al. Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci. 2017;21:198–206. doi: 10.1016/j.cossms.2016.12.001
  • Panda BK, Sahoo S. Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results Phys. 2019;12:1372–1381. doi: 10.1016/j.rinp.2019.01.002
  • Panda BK, Sahoo S. Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf Ser: Mater Sci Eng. 2018;338:012030. doi: 10.1088/1757-899X/338/1/012030
  • Nazami GR, Panda BK, Sahoo S. Finite element simulation of residual stress in direct metal laser sintering of AlSi10Mg built part: effect of laser spot overlapping. Mater Today Proc. 2021;41:445–450. doi: 10.1016/j.matpr.2020.09.844
  • Barath Kumar M, Manikandan M. Assessment of process, parameters, residual stress mitigation, post treatments and finite element analysis simulations of wire arc additive manufacturing technique. Met Mater Int. 2022;28:54–111. doi: 10.1007/s12540-021-01015-5
  • Ahmad SN, Manurung YH, Mat MF, et al. Fem simulation procedure for distortion and residual stress analysis of wire arc additive manufacturing. IOP Conf Ser: Mater Sci Eng. 2020;834:012083. doi: 10.1088/1757-899X/834/1/012083
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15:299–305. doi: 10.1007/BF02667333
  • Somashekara M, Naveenkumar M, Kumar A, et al. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. Int J Adv Manuf Technol. 2017;90:2009–2025. doi: 10.1007/s00170-016-9510-7
  • Mirkoohi E, Ning J, Bocchini P, et al. Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties. J Manuf Mater Process. 2018;2:63. doi: 10.3390/jmmp2030063
  • Mirkoohi E, Seivers DE, Garmestani H, et al. Heat source modeling in selective laser melting. Materials (Basel). 2019;12:2052. doi: 10.3390/ma12132052
  • Kumar KS. Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater Sci. 2014;6:821–834. doi: 10.1016/j.mspro.2014.07.099
  • Liu W, Ma J, Liu S, et al. Experimental and numerical investigation of laser hot wire welding. Int J Adv Manuf Technol. 2015;78:1485–1499. doi: 10.1007/s00170-014-6756-9
  • Ghosh A, Yadav A, Kumar A. Modelling and experimental validation of moving tilted volumetric heat source in gas metal arc welding process. J Mater Process Technol. 2017;239:52–65. doi: 10.1016/j.jmatprotec.2016.08.010
  • Bag S, Trivedi A, De A. Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci. 2009;48:1923–1931. doi: 10.1016/j.ijthermalsci.2009.02.010
  • Yang Y, Zhou X. A volumetric heat source model for thermal modeling of additive manufacturing of metals. Metals (Basel). 2020;10:1406. doi: 10.3390/met10111406
  • Lu X, Lin X, Chiumenti M, et al. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V. Addit Manuf. 2018;21:30–40. doi: 10.1016/j.addma.2018.02.003
  • Lu X, Lin X, Chiumenti M, et al. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition: modelling and experimental calibration. Addit Manuf. 2019;26:166–179. doi: 10.1016/j.addma.2019.02.001
  • Weisz-Patrault D, Margerit P, Constantinescu A. Residual stresses in thin walled structures manufactured by directed energy deposition: in-situ measurements, fast thermo-mechanical simulation and buckling. Addit Manuf. 2022;56:102903. doi: 10.1016/j.addma.2022.102903
  • Sahoo S. Prediction of residual stress and deformation of build part with variation of hatch spacing in direct metal laser sintering of AlSi10Mg built part: thermo-mechanical modeling. J Laser Appl. 2021;33(3). doi: 10.2351/7.0000393
  • Nazami GR, Sahoo S. Influence of hatch spacing and laser spot overlapping on heat transfer during laser powder bed fusion of aluminum alloy. J Laser Appl. 2020;32(4). doi: 10.2351/7.0000157
  • Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Oxford Science Publication; 1990.
  • Li J, Wang Q, Michaleris P. An analytical computation of temperature field evolved in directed energy deposition. J Manuf Sci Eng. 2018;140:101004. doi: 10.1115/1.4040621
  • Ning J, Sievers DE, Garmestani H, et al. Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl Phys A. 2019a;125:1–11. doi: 10.1007/s00339-018-2286-x
  • Ning J, Mirkoohi E, Dong Y, et al. Analytical modeling of 3d temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J Manuf Process. 2019b;44:319–326. doi: 10.1016/j.jmapro.2019.06.013
  • Moran T, Li P, Warner D, et al. Utility of superposition-based finite element approach for part-scale thermal simulation in additive manufacturing. Addit Manuf. 2018;21:215–219. doi: 10.1016/j.addma.2018.02.015
  • Yang Y, Knol M, Van Keulen F, et al. A semi-analytical thermal modelling approach for selective laser melting. Addit Manuf. 2018;21:284–297. doi: 10.1016/j.addma.2018.03.002
  • Yang Y, Zhou X, Li Q, et al. A computationally efficient thermo-mechanical model for wire arc additive manufacturing. Addit Manuf. 2021;46:102090. doi: 10.1016/j.addma.2021.102090
  • Yang Y, van Keulen F, Ayas C. A computationally efficient thermal model for selective laser melting. Addit Manuf. 2020;31:100955. doi: 10.1016/j.addma.2019.100955
  • Zhao H, Zhang G, Yin Z, et al. A 3d dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol. 2011;211:488–495. doi: 10.1016/j.jmatprotec.2010.11.002
  • Bai X, Zhang H, Wang G. Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging. Int. J. Adv. Manuf. Technol. 2013;69:1087–1095. doi: 10.1007/s00170-013-5102-y
  • Wang F, Mao K, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci. 2018;140:68–82. doi: 10.1016/j.ijmecsci.2018.02.043
  • Kung CL, Hung CK, Hsu CM, et al. Residual stress and deformation analysis in butt welding on 6 mm SUS304 steel with jig constraints using gas metal arc welding. Appl Sci. 2017;7(10):982. doi: 10.3390/app7100982
  • Mirzaee-Sisan A, Wu G. Residual stress in pipeline girth welds – A review of recent data and modelling. Int J Press Vessels Pip. 2019;169:142–152. doi: 10.1016/j.ijpvp.2018.12.004
  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci. 2011;50:3315–3322. doi: 10.1016/j.commatsci.2011.06.023
  • Yang Y, Lin H, Li Y, et al. Towards an automated framework for numerical prediction of residual stresses and deformations in metal additive manufacturing. J Manuf Process. Submitted.
  • Zou X, Yan Z, Zou K, et al. Residual stress control of 316 L stainless steel using pulsed-wave laser additive manufacturing. Opt Laser Technol. 2022;150:107910. doi: 10.1016/j.optlastec.2022.107910
  • Gu Y, Zeng F, Qi Y, et al. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550°C. Mater Sci Eng A. 2013;575:74–85. doi: 10.1016/j.msea.2013.03.038