637
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D-printing of architected calcium silicate binders with enhanced and in-situ carbonation

, ORCID Icon & ORCID Icon
Article: e2350768 | Received 09 Feb 2024, Accepted 28 Apr 2024, Published online: 15 May 2024

References

  • Mechtcherine V, Nerella VN, Will F, et al. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing. Autom Constr. 2019;107:102933. doi:10.1016/j.autcon.2019.102933
  • Ooms T, Vantyghem G, Van Coile R, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Addit Manuf. 2021;38:101743. doi:10.1016/j.addma.2020.101743
  • Prihar A, Gupta S, Esmaeeli HS, et al. Tough bouligand and double-bouligand architected concrete enabled by two-component robotic additive manufacturing. SSRN Electron J. 2023. doi:10.2139/ssrn.4345483
  • Prihar A, Garlock MEM, Najmeddine A, et al. Mechanical performance of sinusoidally architected concrete enabled by robotic additive manufacturing. Mater Des. 2024;238:112671. doi:10.1016/j.matdes.2024.112671
  • Khan MS, Sanchez F, Zhou H. 3-D printing of concrete: beyond horizons. Cem Concr Res. 2020;133:106070. doi:10.1016/j.cemconres.2020.106070
  • Buswell RA, Leal de Silva WR, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018;112:37–49. doi:10.1016/j.cemconres.2018.05.006
  • Tay YWD, Lim SG, Phua SLB, et al. Exploring carbon sequestration potential through 3D concrete printing. Virtual Phys Prototyp. 2023;18:e2277347. doi:10.1080/17452759.2023.2277347
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod. 2011;19:1080–1090. doi:10.1016/j.jclepro.2011.02.010
  • Xia M, Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater Des. 2016;110:382–390. doi:10.1016/j.matdes.2016.07.136
  • Raza MH, Zhong RY, Khan M. Recent advances and productivity analysis of 3D printed geopolymers. Addit Manuf. 2022;52:102685. doi:10.1016/j.addma.2022.102685
  • Douba A, Badjatya P, Kawashima S. Enhancing carbonation and strength of MgO cement through 3D printing. Constr Build Mater. 2022;328:126867. doi:10.1016/j.conbuildmat.2022.126867
  • Farnam Y, Villani C, Washington T, et al. Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt. Constr Build Mater. 2016;111:63–71. doi:10.1016/j.conbuildmat.2016.02.098
  • Ashraf W, Olek J, Jain J. Microscopic features of non-hydraulic calcium silicate cement paste and mortar. Cem Concr Res. 2017;100:361–372. doi:10.1016/j.cemconres.2017.07.001
  • Wang X, Guo M-Z, Ling T-C. Review on CO2 curing of non-hydraulic calcium silicates cements: mechanism, carbonation and performance. Cem Concr Compos. 2022;133:104641. doi:10.1016/j.cemconcomp.2022.104641
  • Moini R. Perspectives in architected infrastructure materials. RILEM Tech Lett. 2023;8:125–140. doi:10.21809/rilemtechlett.2023.183
  • Ashraf W, Olek J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. J Mater Sci. 2016;51:6173–6191. doi:10.1007/s10853-016-9909-4
  • VANSIL® W Wollastonite-Low Aspect Ratio Grades for Paints & Coatings, Vanderbilt Minerals, LLC; 2018. https://www.vanderbiltminerals.com/resources/TDS_VANSIL_W_Powder_Grades_Web.pdf.
  • Moini M. Buildability and mechanical performance of architectured cement-based materials fabricated using a direct-ink-writing process. 2020:7489310 Bytes. doi:10.25394/PGS.12413036.V1
  • Moini M, Olek J, Youngblood JP, et al. Additive manufacturing and performance of architectured cement-based materials. Adv Mater. 2018;30:1802123. doi:10.1002/adma.201802123
  • Moini R, Olek J, Zavattieri PD, et al. Open-span printing method for assessment of early-age deformations of additively manufactured cement-based materials using an isosceles triangle. In: SZ Jones, EL Kreiger, editor. Standards development for cement and concrete for Use in additive construction, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959; 2021. p. 1–12. doi:10.1520/STP163620200089
  • Lyu F, Zhao D, Hou X, et al. Overview of the development of 3D-printing concrete. A review. Appl Sci. 2021;11:9822. doi:10.3390/app11219822
  • Chen Y, He S, Gan Y, et al. A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. J Build Eng. 2022;45:103599. doi:10.1016/j.jobe.2021.103599
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14:104–113. doi:10.1080/17452759.2018.1500420
  • Moini R, Olek J, Zavattieri PD, et al. Early-age buildability-rheological properties relationship in additively manufactured cement paste hollow cylinders. Cem Concr Compos. 2022;131:104538. doi:10.1016/j.cemconcomp.2022.104538
  • Rodriguez F, Olek J, Moini M, et al. Linking solids content and flow properties of mortars to their three-dimensional printing characteristics. ACI Mater J. 2021;118; doi:10.14359/51733136
  • Qian Y, Ma S, Kawashima S, et al. Rheological characterization of the viscoelastic solid-like properties of fresh cement pastes with nanoclay addition. Theor Appl Fract Mech. 2019;103:102262. doi:10.1016/j.tafmec.2019.102262
  • Lu B, Weng Y, Li M, et al. A systematical review of 3D printable cementitious materials. Constr Build Mater. 2019;207:477–490. doi:10.1016/j.conbuildmat.2019.02.144
  • Marchon D, Kawashima S, Bessaies-Bey H, et al. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem Concr Res. 2018;112:96–110. doi:10.1016/j.cemconres.2018.05.014
  • Panda B, Unluer C, Tan MJ. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos Part B Eng. 2019;176:107290. doi:10.1016/j.compositesb.2019.107290
  • Ma S, Qian Y, Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cem Concr Res. 2018;108:1–9. doi:10.1016/j.cemconres.2018.02.022
  • Kovler K, Roussel N. Properties of fresh and hardened concrete. Cem Concr Res. 2011;41:775–792. doi:10.1016/j.cemconres.2011.03.009
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647. doi:10.1016/j.conbuildmat.2017.04.015
  • Ashraf W, Olek J, Tian N. Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus. Cem Concr Compos. 2016;72:284–298. doi:10.1016/j.cemconcomp.2016.05.023
  • Maddalena R, Hall C, Hamilton A. Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochim Acta. 2019;672:142–149. doi:10.1016/j.tca.2018.09.003
  • Moini R, Baghaie A, Rodriguez FB, et al. Quantitative microstructural investigation of 3D-printed and cast cement pastes using micro-computed tomography and image analysis. Cem Concr Res. 2021;147:106493. doi:10.1016/j.cemconres.2021.106493
  • Moini M, Olek J, Magee B, et al. Additive manufacturing and characterization of architectured cement-based materials via X-ray micro-computed tomography. In: T Wangler, RJ Flatt, editor. First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Cham: Springer International Publishing; 2019. p. 176–189. doi:10.1007/978-3-319-99519-9_16
  • Ghantous RM, Evseeva A, Dickey B, et al. Examining effect of printing directionality on the freezing-and-thawing response of three-dimensional-printed cement paste. Mater J. 2023;120:89–102. doi:10.14359/51738808
  • Ashraf W, Olek J. Carbonation activated binders from pure calcium silicates: reaction kinetics and performance controlling factors. Cem Concr Compos. 2018;93:85–98. doi:10.1016/j.cemconcomp.2018.07.004
  • Morandeau A, Thiéry M, Dangla P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res. 2014;56:153–170. doi:10.1016/j.cemconres.2013.11.015
  • Kocaba V. Development and evaluation of methods to follow microstructural development of cementitious systems including slags. 2009. doi:10.5075/EPFL-THESIS-4523
  • Diamond S. Measurement of the viscosity of resins used in SEM specimen preparation. Mater Struct. 2007;40:995–1000. doi:10.1617/s11527-006-9196-7
  • Walker HN, Lane DS, Stutzman PE. Petrographic methods of examining hardened concrete: a petrographic manual. 1997. doi:10.21949/1404099
  • Gupta S, Esmaeeli HS, Prihar A, et al. Fracture and transport analysis of heterogeneous 3D-Printed lamellar cementitious materials. Cem Concr Compos. 2023;140:105034. doi:10.1016/j.cemconcomp.2023.105034
  • Wong HS, Head MK, Buenfeld NR. Pore segmentation of cement-based materials from backscattered electron images. Cem Concr Res. 2006;36:1083–1090. doi:10.1016/j.cemconres.2005.10.006
  • Abuelma’atti MT. A simple algorithm for fitting measured data to Fourier-series models. Int J Math Educ Sci Technol. 1993;24:107–112. doi:10.1080/0020739930240114
  • Panwar P, Gopal G, Kumar R. Image Segmentation using K-means clustering and thresholding. Image (IN). 2016;3:1787–1793.
  • Akhnoukh AK, Buckhalter C. Ultra-high-performance concrete: constituents, mechanical properties, applications and current challenges. Case Stud Constr Mater. 2021;15:e00559. doi:10.1016/j.cscm.2021.e00559
  • Ashraf W, Olek J, Sahu S. Phase evolution and strength development during carbonation of low-lime calcium silicate cement (CSC). Constr Build Mater. 2019;210:473–482. doi:10.1016/j.conbuildmat.2019.03.038
  • Liu J, Ren F, Quan H. Prediction model for compressive strength of porous concrete with low-grade recycled aggregate. Materials (Basel). 2021;14:3871. doi:10.3390/ma14143871
  • Chang C-F, Chen J-W. The experimental investigation of concrete carbonation depth. Cem Concr Res. 2006;36:1760–1767. doi:10.1016/j.cemconres.2004.07.025
  • Sun J, Bertos MF, Simons SJR. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy Environ Sci. 2008;1:370. doi:10.1039/b804165m
  • Lo Y, Lee HM. Curing effects on carbonation of concrete using a phenolphthalein indicator and fourier-transform infrared spectroscopy. Build Environ. 2002;37:507–514. doi:10.1016/S0360-1323(01)00052-X
  • Behnia B, Aali Anvari A, Safardoust-Hojaghan H, et al. Positive effects of novel nano-zirconia on flexural and compressive strength of Portland cement paste. Polyhedron. 2020;177:114317. doi:10.1016/j.poly.2019.114317
  • Liu J, Fu J, Yang Y, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr Build Mater. 2019;199:1–11. doi:10.1016/j.conbuildmat.2018.12.006
  • Mousavi MA, Bahari A. Influence of functionalized MWCNT on microstructure and mechanical properties of cement paste. Sādhanā. 2019;44:103. doi:10.1007/s12046-019-1087-z
  • Peng Y, Unluer C. Development of alternative cementitious binders for 3D printing applications: a critical review of progress, advantages and challenges. Compos Part B Eng. 2023;252:110492. doi:10.1016/j.compositesb.2022.110492
  • Jafari D, van Alphen KJH, Geurts BJ, et al. Porous materials additively manufactured at low energy: single-layer manufacturing and characterization. Mater Des. 2020;191:108654. doi:10.1016/j.matdes.2020.108654