371
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Frequency- and bandwidth-controllable electromagnetic absorber using 3D-printed shape memory meta-wires

, , , & ORCID Icon
Article: e2351143 | Received 27 Feb 2024, Accepted 24 Apr 2024, Published online: 23 May 2024

References

  • Bhattacharyya S, Srivastava KV. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J Appl Phys. 2014;115(6):064508. doi:10.1063/1.4865273
  • Cheng Y, Yang H, Cheng Z, et al. Perfect metamaterial absorber based on a split-ring-cross resonator. Appl Phys A: Mater Sci Process. 2011;102(1):99–103. doi:10.1007/s00339-010-6022-4
  • Ghosh S, Lim S. Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb. IEEE Antennas Wirel Propag Lett. 2018a;17(12):2379–2383. doi:10.1109/LAWP.2018.2876023
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):1–4. doi:10.1103/PhysRevLett.100.207402
  • Li H, Hua Yuan L, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers. J Appl Phys. 2011;110(1):014909. doi:10.1063/1.3608246
  • Li W, Cheng Y. Dual-Band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun. 2020;462(October 2019):125265. doi:10.1016/j.optcom.2020.125265
  • Park JW, Van Tuong P, Yull Rhee J, et al. Multi-Band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express. 2013;21(8):9691), doi:10.1364/OE.21.009691
  • Patel SK, Parmar J, Katkar V, et al. Ultra-Broadband and polarization-insensitive metasurface absorber with behavior prediction using machine learning. Alex Eng J. 2022;61(12):10379–10393. doi:10.1016/j.aej.2022.03.080
  • Yang Z, Liang Q, Duan Y, et al. An ultrabroadband metamaterial absorber based on remarkable magnetic coupling via constructing conductive composite resonators and magnetic gradient gyroid structure. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2262445
  • Yoo M, Lim S. Polarization-Independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Trans Antennas Propag. 2014;62(5):2652–2658. doi:10.1109/TAP.2014.2308511
  • Zhang T, Li D, Yang Z, et al. A multi-materials 3D-printed continuous conductive fibre-based metamaterial for broadband microwave absorption. Virtual Phys Prototyp. 2024;19(1). doi:10.1080/17452759.2023.2285417
  • Kim YJ, Yoo YJ, Hwang JS, et al. Ultra-Broadband microwave metamaterial absorber based on resistive sheets. J Opt. 2017;19(1):015103), doi:10.1088/2040-8986/19/1/015103
  • Sheokand H, Ghosh S, Singh G, et al. Transparent broadband metamaterial absorber based on resistive films. J Appl Phys. 2017;122(10):105105. doi:10.1063/1.5001511
  • Sun L, Cheng H, Zhou Y, et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt Express. 2012;20(4):4675. doi:10.1364/OE.20.004675
  • Chen X, Li Y, Fu Y, et al. Design and analysis of lumped resistor loaded metamaterial absorber with transmission band. Opt Express. 2012;20(27):28347. doi:10.1364/OE.20.028347
  • Nguyen TT, Lim S. Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl Phys Lett. 2018a;112(2):021605. doi:10.1063/1.5004211
  • Nguyen TT, Lim S. Design of metamaterial absorber using eight-resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci Rep. 2018b;8(1):1–10. doi:10.1038/s41598-018-25074-8
  • Chaudhary G, Jeong Y. A tunable bandpass filter with arbitrarily terminated port impedance using dual-mode resonator. J Electromagn Eng Sci. 2022;22(6):647–655. doi:10.26866/jees.2022.6.r.134
  • Fang J, Huang J, Gou Y, et al. Research on broadband tunable metamaterial absorber based on PIN diode. Optik (Stuttg). 2020;200(February 2019):163171. doi:10.1016/j.ijleo.2019.163171
  • Jeong H, Lim S. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane. Sci Rep. 2018;8(1):1–9. doi:10.1038/s41598-018-27609-5
  • Kim HK, Lee D, Lim S. Frequency-Tunable metamaterial absorber using a varactor-loaded fishnet-like resonator. Appl Opt. 2016a;55(15):4113. doi:10.1364/AO.55.004113
  • Rana B, Lee IG, Hong IP. Experimental characterization of 2 × 2 electronically reconfigurable 1 Bit unit cells for a beamforming transmitarray at X band. J Electromagn Eng Sci. 2021;21(2):153–160. doi:10.26866/jees.2021.21.2.153
  • Xu W, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber. Appl Phys Lett. 2013;103(3):031902), doi:10.1063/1.4813750
  • Zhao J, Cheng Q, Chen J, et al. A tunable metamaterial absorber using varactor diodes. New J Phys. 2013;15:043049), doi:10.1088/1367-2630/15/4/043049
  • Zhu B, Huang C, Feng Y, et al. Dual band switchable metamaterial electromagnetic absorber. Prog Electromagn Res B. 2010;24(July):121–129.
  • Jeong H, Cui Y, Tentzeris MM, et al. Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber. Addit Manuf. 2020;35(June):101405. doi:10.1016/j.addma.2020.101405
  • Le DH, Xu Y, Tentzeris MM, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response. Extreme Mech Lett. 2020;36:100670. doi:10.1016/j.eml.2020.100670
  • Le DH, Jeong H, Pham TL, et al. A rotary transformable kirigami-inspired metasurface for broadband electromagnetic absorption using additive manufacturing technology. Smart Mater Struct. 2021;30(7):075002. doi:10.1088/1361-665X/abfb81
  • Zhang F, Feng S, Qiu K, et al. Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett. 2015;106(9):091907. doi:10.1063/1.4914502
  • Kim J, Jeong H, Lim S. Mechanically actuated frequency reconfigurable metamaterial absorber. Sens Actuators A Phys. 2019;299:111619), doi:10.1016/j.sna.2019.111619
  • Ghosh S, Lim S. Fluidically switchable metasurface for wide spectrum absorption. Sci Rep. 2018b;8(1):1–9. doi:10.1038/s41598-018-28574-9
  • Kim HK, Lee D, Lim S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications. Sensors. 2016b;16(8):1246), doi:10.3390/s16081246
  • Lim D, Lim S. Liquid-metal-fluidically switchable metasurface for broadband and polarization-insensitive absorption. IEEE Access. 2018;6:40854–40859. doi:10.1109/ACCESS.2018.2857472
  • Phon R, Lee M, Kim Y, et al. Thermally reconfigurable helical shape memory alloy–based metamaterial. Electron Lett. 2022;58(1):8–9. doi:10.1049/ell2.12351
  • Zhang K, Ma T, Liu J, et al. Dynamically tunable and polarization-insensitive dual-band terahertz metamaterial absorber based on TiNi shape memory alloy films. Results Phys. 2021;23(February):104001. doi:10.1016/j.rinp.2021.104001
  • Behl M, Lendlein A. Shape-memory polymers. Mater Today. 2007;10(4):20–28. doi:10.1016/S1369-7021(07)70047-0
  • Lendlein A, Kelch S. Shape-Memory effect from permanent shape. Angew Chem, Int Ed Engl. 2002;41:2034–2057.
  • Kim Y, Phon R, Jeong H, et al. Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product. Sci Rep. 2022;12(1):1–7. doi:10.1038/s41598-021-99269-x
  • Chatham CA, Long TE, Williams CB. A review of the process physics and material screening methods for polymer powder Bed fusion additive manufacturing. Prog Polym Sci. 2019;93:68–95. doi:10.1016/j.progpolymsci.2019.03.003
  • Martin AA, Calta NP, Khairallah SA, et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat Commun. 2019;10(1):1–10. doi:10.1038/s41467-019-10009-2
  • Snow Z, Nassar AR, Reutzel EW. Invited Review Article: Review of the Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing. Addit Manuf. 2020;36(January):101457. doi:10.1016/j.addma.2020.101457
  • Nohut S, Schwentenwein M. Vat photopolymerization additive manufacturing of functionally graded materials: A review. Journal of Manufacturing and Materials Processing. 2022;6(1):17. doi:10.3390/jmmp6010017
  • Straathof MH, van Driel CA, van Lingen JNJ, et al. Development of propellant compositions for Vat photopolymerization additive manufacturing. Propellants, Explos, Pyrotech. 2020;45(1):36–52. doi:10.1002/prep.201900176
  • Dizon JRC, Espera AH, Chen Q, et al. Mechanical characterization of 3D-printed polymers. Addit Manuf. 2018;20:44–67. doi:10.1016/j.addma.2017.12.002
  • Webbe Kerekes T, Lim H, Joe WY, et al. Characterization of process–deformation/damage property relationship of fused deposition modeling (FDM) 3D-printed specimens. Addit Manuf. 2019;25(December 2018):532–544. doi:10.1016/j.addma.2018.11.008
  • Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286–1296. doi:10.1016/j.promfg.2019.06.089
  • Nguyen TT, Lim S. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017;7(1):1–11. doi:10.1038/s41598-016-0028-x
  • Jeong H, Park E, Lim S. Frequency memorizing shape morphing microstrip monopole antenna using hybrid programmable 3-dimensional printing. Addit Manuf. 2022;58(October):102988. doi:10.1016/j.addma.2022.102988
  • Park S, Park E, Lee M, et al. Shape-Morphing antenna array by 4D-printed multimaterial miura origami. ACS Appl Mater Interfaces. 2023;15(42):49843–49853. doi:10.1021/acsami.3c11425