492
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Incorporating coarse aggregates into 3D concrete printing from mixture design and process control to structural behaviours and practical applications: a review

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2351154 | Received 09 Apr 2024, Accepted 27 Apr 2024, Published online: 15 May 2024

References

  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037. doi:10.1016/j.cemconres.2020.106037
  • Hou S, Duan Z, Xiao J, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater. 2021;273:121745.
  • Şahin HG, Mardani-Aghabaglou A. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review. Constr Build Mater. 2022;316:125865. doi:10.1016/j.conbuildmat.2021.125865
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12(3):261–276. doi:10.1080/17452759.2017.1326724
  • Souza MT, Ferreira IM, Guzi de Moraes E, et al. Novaes de oliveira, 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng. 2020;32:101833. doi:10.1016/j.jobe.2020.101833
  • Mai I, Brohmann L, Freund N, et al. Large particle 3D concrete printing-A green and viable solution. Materials. 2021;14(20):6125.
  • Xiao J, Ji G, Zhang Y, et al. Large-scale 3D printing concrete technology: current status and future opportunities. Cem Concr Compos. 2021;122. doi:10.1016/j.cemconcomp.2021.104115
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022;17(3):662–681. doi:10.1080/17452759.2022.2048521
  • Gebhard L, Burger J, Mata-Falcón J, et al. Towards efficient concrete structures with ultra-thin 3D printed formwork: exploring reinforcement strategies and optimisation. Virtual Phys Prototyp. 2022;17(3):599–616. doi:10.1080/17452759.2022.2041873
  • Bai G, Wang L, Ma G, et al. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates. Cem Concr Compos. 2021;120:104037.
  • Chen Y, Zhang Y, Pang B, et al. Extrusion-based 3D printing concrete with coarse aggregate: printability and direction-dependent mechanical performance. Constr Build Mater. 2021;296:123624.
  • Rahul AV, Mohan MK, Schutter GD, et al. 3D printable concrete with natural and recycled coarse aggregates: rheological, mechanical and shrinkage behaviour. Cem Concr Compos. 2022;125. doi:10.1016/j.cemconcomp.2021.104311
  • Ashrafi N, Duarte JP, Nazarian S, et al. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete. Virtual Phys Prototyp. 2019;14(2):135–140. doi:10.1080/17452759.2018.1532800
  • Mechtcherine V, Nerella VN, Will F, et al. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing. Autom Constr. 2019;107:102933. doi:10.1016/j.autcon.2019.102933
  • Mohan MK, Rahul AV, van Dam B, et al. Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures. Resour Conserv Recycl. 2022;181; doi:10.1016/j.resconrec.2022.106255
  • Tay YWD, Lim SG, Phua SLB, et al. Exploring carbon sequestration potential through 3D concrete printing. Virtual Phys Prototyp. 2023;18(1):e2277347. doi:10.1080/17452759.2023.2277347
  • Yu S, Du H, Sanjayan J. Aggregate-bed 3D concrete printing with cement paste binder. Cem Concr Res. 2020;136:106169.
  • Yu S, Sanjayan J, Du H. Effects of cement mortar characteristics on aggregate-bed 3D concrete printing. Addi Manuf. 2022;58:103024.
  • Liu H, Liu C, Wu Y, et al. 3D printing concrete with recycled coarse aggregates: the influence of pore structure on interlayer adhesion. Cem Concr Compos. 2022;134:104742.
  • Liu H, Liu C, Wu Y, et al. Hardened properties of 3D printed concrete with recycled coarse aggregate. Cem Concr Res. 2022;159:106868.
  • Chen W, Jin R, Xu Y, et al. Adopting recycled aggregates as sustainable construction materials: a review of the scientific literature. Constr Build Mater. 2019;218:483–496. doi:10.1016/j.conbuildmat.2019.05.130
  • Ahmed GH. A review of “3D concrete printing”: materials and process characterization, economic considerations and environmental sustainability. J Build Eng. 2023;66:105863. doi:10.1016/j.jobe.2023.105863
  • Zhao Z, Ji C, Xiao J, et al. A critical review on reducing the environmental impact of 3D printing concrete: material preparation, construction process and structure level. Constr Build Mater. 2023;409:133887.
  • Ji G, Xiao J, Zhi P, et al. Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates. Constr Build Mater. 2022;325:126740.
  • Liu H, Liu C, Bai G, et al. Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate. Addit Manuf. 2022;55:102843.
  • Taubert M, Mechtcherine V. Mix design for a 3D-printable concrete with coarse aggregates and consideration of standardisation. Third RILEM International Conference on Concrete and Digital Fabrication; 2022. p. 59–64.
  • Wang X, Jia L, Jia Z, et al. Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process. J Build Eng. 2022;56:104745.
  • Xiao J, Lv Z, Duan Z, et al. Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations. J Build Eng. 2022;51:104282. doi:10.1016/j.jobe.2022.104282
  • Zhang C, Jia Z, Wang X, et al. A two-phase design strategy based on the composite of mortar and coarse aggregate for 3D printable concrete with coarse aggregate. J Build Eng. 2022;54:104672.
  • Chen Y, Zhang W, Zhang Y, et al. 3D printed concrete with coarse aggregates: built–in–stirrup permanent concrete formwork for reinforced columns. J Build Eng. 2023;70:106362.
  • Seo E-A, Kim W-W, Kim S-W, et al. Mechanical properties of 3D printed concrete with coarse aggregates and polypropylene fiber in the air and underwater environment. Constr Build Mater. 2023;378:131184.
  • Vespalec A, Podroužek J, Boštík J, et al. Experimental study on time dependent behaviour of coarse aggregate concrete mixture for 3D construction printing. Constr Build Mater. 2023;376:130999. doi:10.1016/j.conbuildmat.2023.130999
  • Vespalec A, Podrouzek J, Koutny D. Doe approach to setting input parameters for digital 3D printing of concrete for coarse aggregates up to 8 mm. Materials. 2023;16(9). doi:10.3390/ma16093418
  • Sasikumar A, Balasubramanian D, Senthil Kumaran MS, et al. Effect of coarse aggregate content on the rheological and buildability properties of 3D printable concrete. Constr Build Mater. 2023;392:131859. doi:10.1016/j.conbuildmat.2023.131859
  • Jiao D, Shi C, Yuan Q, et al. Effect of constituents on rheological properties of fresh concrete-A review. Cem Concr Compos. 2017;83:146–159. doi:10.1016/j.cemconcomp.2017.07.016
  • Jayathilakage R, Rajeev P, Sanjayan JG. Yield stress criteria to assess the buildability of 3D concrete printing. Constr Build Mater. 2020;240:117989. doi:10.1016/j.conbuildmat.2019.117989
  • Nerella VN, Beigh MAB, Fataei S, et al. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cem Concr Res. 2019;115:530–544. doi:10.1016/j.cemconres.2018.08.003
  • Wu Y, Liu C, Liu H, et al. Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates. J Build Eng. 2021;42:103030.
  • Ivanova I, Mechtcherine V. Possibilities and challenges of constant shear rate test for evaluation of structural build-up rate of cementitious materials. Cem Concr Res. 2020;130:105974. doi:10.1016/j.cemconres.2020.105974
  • Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–1220. doi:10.1617/s11527-015-0571-0
  • Wangler T, Lloret E, Reiter L, et al. Digital concrete: opportunities and challenges. RILEM Tech Lett. 2016;1:67–75. doi:10.21809/rilemtechlett.2016.16
  • Mahaut F, Mokéddem S, Chateau X, et al. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res. 2008;38(11):1276–1285. doi:10.1016/j.cemconres.2008.06.001
  • Subramaniam KV, Wang X. An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cem Concr Res. 2010;40(1):33–44. doi:10.1016/j.cemconres.2009.09.018
  • Perrot A, Pierre A, Vitaloni S, et al. Prediction of lateral form pressure exerted by concrete at low casting rates. Mater Struct. 2015;48(7):2315–2322. doi:10.1617/s11527-014-0313-8
  • Rahul AV, Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates. Cem Concr Compos. 2020;109:103570. doi:10.1016/j.cemconcomp.2020.103570
  • Mahaut F, Chateau X, Coussot P, et al. Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J Rheol. 2008;52(1):287–313. doi:10.1122/1.2798234
  • Noor TUMA. Rheology of high flowing mortar and concrete. Mater Struct. 2004;37:513–521. doi:10.1007/BF02481575
  • Cui H, Li Y, Cao X, et al. Experimental study of 3D concrete printing configurations based on the buildability evaluation. Appl Sci. 2022;12(6):2939.
  • Reinhardt HW, Wüstholz T. About the influence of the content and composition of the aggregates on the rheological behaviour of self-compacting concrete. Mater Struct. 2006;39(7):683–693. doi:10.1617/s11527-006-9102-3
  • Yammine J, Chaouche M, Guerinet M, et al. From ordinary rhelogy concrete to self compacting concrete: a transition between frictional and hydrodynamic interactions. Cem Concr Res. 2008;38(7):890–896. doi:10.1016/j.cemconres.2008.03.011
  • Xiao J, Hou S, Duan Z, et al. Rheology of 3D printable concrete prepared by secondary mixing of ready-mix concrete. Cem Concr Compos. 2023;138:104958. doi:10.1016/j.cemconcomp.2023.104958
  • Silva RV, de Brito J, Dhir RK. Fresh-state performance of recycled aggregate concrete: a review. Constr Build Mater. 2018;178:19–31. doi:10.1016/j.conbuildmat.2018.05.149
  • Seara-Paz S, González-Fonteboa B, Martínez-Abella F, et al. Deformation recovery of reinforced concrete beams made with recycled coarse aggregates. Eng Struct. 2022;251:113482. doi:10.1016/j.engstruct.2021.113482
  • Tong J, Ding Y, Lv X, et al. Effect of carbonated recycled coarse aggregates on the mechanical properties of 3D printed recycled concrete. J Build Eng. 2023;80:107959. doi:10.1016/j.jobe.2023.107959
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018;112:76–85. doi:10.1016/j.cemconres.2018.04.005
  • Mechtcherine V, Nerella VN, Kasten K. Testing pumpability of concrete using sliding pipe rheometer. Constr Build Mater. 2014;53:312–323. doi:10.1016/j.conbuildmat.2013.11.037
  • He L, Tan JZM, Chow WT, et al. Design of novel nozzles for higher interlayer strength of 3D printed cement paste. Addit Manuf. 2021;48:102452.
  • Bong SH, Xia M, Nematollahi B, et al. Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications. Cem Concr Compos. 2021;121:104060.
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232. doi:10.1617/s11527-012-9828-z
  • Nerella VN, Näther M, Iqbal A, et al. Inline quantification of extrudability of cementitious materials for digital construction. Cem Concr Compos. 2019;95:260–270. doi:10.1016/j.cemconcomp.2018.09.015
  • El Cheikh K, Rémond S, Khalil N, et al. Numerical and experimental studies of aggregate blocking in mortar extrusion. Constr Build Mater. 2017;145:452–463. doi:10.1016/j.conbuildmat.2017.04.032
  • Ahmed ZY, Bos FP, Van Brunschot M, et al. On-demand additive manufacturing of functionally graded concrete. Virtual Phys Prototyp. 2020;15(2):194–210. doi:10.1080/17452759.2019.1709009
  • Rushing TS, Stynoski PB, Barna LA, et al. Investigation of concrete mixtures for additive construction. In 3D concrete printing technology. Elsevier; 2019, p. 137–160.
  • Taubert M, Mechtcherine V. Mix design for a 3D-printable concrete with coarse aggregates and consideration of standardisation. Rilem International Conference on Concrete and Digital Fabrication. Springer; 2022, p. 59-64.
  • Ji G, Ding T, Xiao J, et al. A 3D printed ready-mixed concrete power distribution substation. Mater Constr Technol Mater. 2019;12(9):1540.
  • Vespalec A, Novak J, Kohoutkova A, et al. Interface behavior and interface tensile strength of a hardened concrete mixture with a coarse aggregate for additive manufacturing. Materials. 2020;13(22). doi:10.3390/ma13225147
  • Liu Y, Wang L, Yuan Q, et al. Effect of coarse aggregate on printability and mechanical properties of 3D printed concrete. Constr Build Mater. 2023;405:133338.
  • Hüsken G, Brouwers HJH. On the early-age behavior of zero-slump concrete. Cem Concr Res. 2012;42(3):501–510. doi:10.1016/j.cemconres.2011.11.007
  • Güllü H, Agha AA. The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting. Constr Build Mater. 2021;274. doi:10.1016/j.conbuildmat.2020.122091
  • Duan Z, Hou S, Xiao J, et al. Study on the essential properties of recycled powders from construction and demolition waste. J Clean Prod. 2020;253:119865. doi:10.1016/j.jclepro.2019.119865
  • Bos F, Bosco E, Salet T. Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys Prototyp. 2019;14(2):160–174. doi:10.1080/17452759.2018.1548069
  • Rahman M, Baluch M, Malik M. Thixotropic behavior of self compacting concrete with different mineral admixtures. Constr Build Mater. 2014;50:710–717. doi:10.1016/j.conbuildmat.2013.10.025
  • Benaicha M, Roguiez X, Jalbaud O, et al. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Constr Build Mater. 2015;84:103–110. doi:10.1016/j.conbuildmat.2015.03.061
  • Burroughs JF, Weiss J, Haddock JE. Influence of high volumes of silica fume on the rheological behavior of oil well cement pastes. Constr Build Mater. 2019;203:401–407. doi:10.1016/j.conbuildmat.2019.01.027
  • Zhang X, Han J. The effect of ultra-fine admixture on the rheological property of cement paste. Cem Concr Res. 2000;30(5):827–830. doi:10.1016/S0008-8846(00)00236-2
  • Ahari RS, Erdem TK, Ramyar K. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete. Constr Build Mater. 2015;75:89–98. doi:10.1016/j.conbuildmat.2014.11.014
  • Chen Y, Zhang Y, Pang B, et al. Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate. Mater Struct. 2022;55(3):100. doi:10.1617/s11527-022-01943-7
  • Zhou Y, Jiang D, Sharma R, et al. Enhancement of 3D printed cementitious composite by short fibers: a review. Constr Build Mater. 2023;362:129763.
  • Zhang D, Feng P, Zhou P, et al. 3D printed concrete walls reinforced with flexible FRP textile: automatic construction, digital rebuilding, and seismic performance. Eng Struct. 2023;291:116488.
  • Shakor P, Nejadi S, Paul G, et al. Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Front Built Environ. 2019;4. doi:10.3389/fbuil.2018.00085
  • Muthukrishnan S, Ramakrishnan S, Sanjayan J. Technologies for improving buildability in 3D concrete printing. Cem Concr Compos. 2021;122:104144. doi:10.1016/j.cemconcomp.2021.104144
  • Zhang C, Wang H. Swing vibration control of suspended structures using the active rotary inertia driver system: theoretical modeling and experimental verification. Struc Contr Health Monit. 2020;27(6):e2543.
  • Perrot A, Rangeard D, Courteille E. 3D printing of earth-based materials: processing aspects. Constr Build Mater. 2018;172:670–676. doi:10.1016/j.conbuildmat.2018.04.017
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225. doi:10.1080/17452759.2016.1209867
  • Salet TAM, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp. 2018;13(3):222–236. doi:10.1080/17452759.2018.1476064
  • Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017;83:212–221. doi:10.1016/j.autcon.2017.08.019
  • Pattaje Sooryanarayana K, Stynoski P, Lange D. Effect of vibration on the rheology of concrete for 3D printing, Second RILEM International Conference on Concrete and Digital Fabrication; 2020, p. 353–359.
  • Controlling Three-Dimensional-Printable Concrete with Vibration. ACI Mater J. 2021;118(6):353–358.
  • Khoshnevis B. Automated construction by contour crafting—related robotics and information technologies. Autom Constr. 2004;13(1):5–19. doi:10.1016/j.autcon.2003.08.012
  • Akcay B, Agar-Ozbek AS, Bayramov F, et al. Interpretation of aggregate volume fraction effects on fracture behavior of concrete. Constr Build Mater. 2012;28(1):437–443. doi:10.1016/j.conbuildmat.2011.08.080
  • Warsi SBF, Srinivas D, Panda B, et al. Investigating the impact of coarse aggregate dosage on the mechanical performance of 3D printable concrete. Innovative Infrastructure Solutions. 2024;9(1):5. doi:10.1007/s41062-023-01317-0
  • Ali A, Riaz RD, Malik UJ, et al. Machine learning-based predictive model for tensile and flexural strength of 3D-printed concrete. Materials. 2023;16(11):4149.
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14(1):104–113. doi:10.1080/17452759.2018.1500420
  • Ye J, Cui C, Yu J, et al. Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Constr Build Mater. 2021;281:122586.
  • Kalra M, Mehmood G. A review paper on the effect of different types of coarse aggregate on concrete. IOP Conf Ser: Mater Sci Eng. 2018;431:082001. doi:10.1088/1757-899X/431/8/082001
  • Suiker A. Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments. Int J Mech Sci. 2018;137:145–170. doi:10.1016/j.ijmecsci.2018.01.010
  • Panda B, Lim JH, Tan MJ. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos Part B: Eng. 2019;165:563–571. doi:10.1016/j.compositesb.2019.02.040
  • Dell'Endice A, Bouten S, Van Mele T, et al. Structural design and engineering of Striatus, an unreinforced 3D-concrete-printed masonry arch bridge. Eng Struct. 2023;292:116534. doi:10.1016/j.engstruct.2023.116534
  • Mogra M, Asaf O, Sprecher A, et al. Design optimization of 3D printed concrete elements considering buildability. Eng Struct. 2023;294:116735. doi:10.1016/j.engstruct.2023.116735
  • Anton A, Reiter L, Wangler T, et al. A 3D concrete printing prefabrication platform for bespoke columns. Autom Constr. 2021;122:103467. doi:10.1016/j.autcon.2020.103467
  • Chen Y, Zhang Y, Liu Z, et al. 3D-printed concrete permanent formwork: effect of postcast concrete proportion on interface bonding. Mater Lett. 2023;344:134472.
  • Kreiger EL, Kreiger MA, Case MP. Development of the construction processes for reinforced additively constructed concrete. Addit Manuf. 2019;28:39–49. doi:10.1016/j.addma.2019.02.015
  • Diggs-McGee BN, Kreiger EL, Kreiger MA, et al. Print time vs. elapsed time: a temporal analysis of a continuous printing operation for additive constructed concrete. Addit Manuf. 2019;28:205–214. doi:10.1016/j.addma.2019.04.008
  • Mueller RP, Fikes JC, Case MP, et al. Additive construction with mobile emplacement (ACME), International Astronautical Federation (IAF), 2017.
  • Scott C. Chinese construction company 3D prints an entire two-story house on-site in 45 days, June, 16, 2016. https://3dprint.com/138664/huashang-tengda-3d-print-house/.
  • Liu H, Liu C, Zhang Y, et al. Bonding properties between 3D printed coarse aggregate concrete and rebar based on interface structural characteristics. Addit Manuf. 2023;78:103893. doi:10.1016/j.addma.2023.103893
  • Sevenson B. Shanghai-based WinSun 3D prints 6-story apartment building and an incredible home, January 18. 2015. https://3dprint.com/38144/3d-printed-apartment-building/.
  • Han Y, Yang Z, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod. 2021;278:123884. doi:10.1016/j.jclepro.2020.123884
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647. doi:10.1016/j.conbuildmat.2017.04.015
  • Holt E, Leivo M. Cracking risks associated with early age shrinkage. Cem Concr Compos. 2004;26(5):521–530. doi:10.1016/S0958-9465(03)00068-4
  • Eguchi K, Teranishi K. Prediction equation of drying shrinkage of concrete based on composite model. Cem Concr Res. 2005;35(3):483–493. doi:10.1016/j.cemconres.2004.08.002
  • Lowke D, Mai I, Keita E, et al. Material-process interactions in particle bed 3D printing and the underlying physics. Cem Concr Res. 2022;156. doi:10.1016/j.cemconres.2022.106748
  • Lowke D, Dini E, Perrot A, et al. Particle-bed 3D printing in concrete construction – possibilities and challenges. Cem Concr Res. 2018;112:50–65. doi:10.1016/j.cemconres.2018.05.018
  • Lyu Q, Dai P, Chen A. Sandwich-structured porous concrete manufactured by mortar-extrusion and aggregate-bed 3D printing. Constr Build Mater. 2023;392:131909.
  • Yang M, Chen D, Shi L, et al. How do construct a sponge city that can improve residents’ satisfaction? evidence from a suburb of huizhou city, China. Ecol Indic. 2022;142:109238.
  • Hack N, Bahar M, Hühne C, et al. Development of a robot-based multi-directional dynamic fiber winding process for additive manufacturing using shotcrete 3D printing. Fibers. 2021;9(6). doi:10.3390/fib9060039
  • Pierre A, Weger D, Perrot A, et al. Penetration of cement pastes into sand packings during 3D printing: analytical and experimental study. Mater Struct. 2018;51(1). doi:10.1617/s11527-018-1148-5
  • Chevalier T, Chevalier C, Clain X, et al. Darcy’s law for yield stress fluid flowing through a porous medium. J Nonnewton Fluid Mech. 2013;195:57–66. doi:10.1016/j.jnnfm.2012.12.005
  • Wu Z, Memari AM, Duarte JP. State of the art review of reinforcement strategies and technologies for 3D printing of concrete. Energies. 2022;15(1):360. doi:10.3390/en15010360