658
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and mechanical properties of Al-Cu alloy during wire and arc additive manufacturing by adding micron TiB2 particles

, , , , &
Article: e2351170 | Received 29 Feb 2024, Accepted 27 Apr 2024, Published online: 15 May 2024

References

  • He H, Yi Y, Huang S, et al. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J Mater Sci Technol. 2019;35(1):55–63. doi:10.1016/j.jmst.2018.09.007
  • Zhou Y, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J Mater Sci Technol. 2020;37:143–153. doi:10.1016/j.jmst.2019.06.016
  • Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol. 2018;34(8):895–916. doi:10.1080/02670836.2018.1455012
  • Ryan EM, Sabin TJ, Watts JF, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol. 2018;262:577–584. doi:10.1016/j.jmatprotec.2018.07.030
  • McLean N, Bermingham MJ, Colegrove P, et al. Effect of hot isostatic pressing and heat treatments on porosity of wire arc additive manufactured Al 2319. J Mater Process Technol. 2022;310:117769, doi:10.1016/j.jmatprotec.2022.117769
  • Jing Y, Fang X, Xi N, et al. Improved tensile strength and fatigue properties of wire-arc additively manufactured 2319 aluminum alloy by surface laser shock peening. Mater Sci Eng A. 2023;864:144599, doi:10.1016/j.msea.2023.144599
  • Gu J, Yang S, Gao M, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy. Additive Manufacturing. 2020;34:101370, doi:10.1016/j.addma.2020.101370
  • Bai JY, Fan CL, Lin SB, et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment. J Mater Eng Perform. 2017;26(4):1808–1816. doi:10.1007/s11665-017-2627-5
  • Gu J, Gao M, Yang S, et al. Microstructure, defects, and mechanical properties of wire + arc additively manufactured Al Cu4.3-Mg1.5 alloy. Mater Design. 2020;186:108357, doi:10.1016/j.matdes.2019.108357
  • Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering. Mater Sci Eng A. 2021;800:140168, doi:10.1016/j.msea.2020.140168
  • Gu J, Ding J, Williams SW, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater Sci Eng A. 2016;651:18–26. doi:10.1016/j.msea.2015.10.101
  • Gu JL, Ding JL, Williams SW, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J Mater Process Technol. 2016;230:26–34. doi:10.1016/j.jmatprotec.2015.11.006
  • Gu DD, Rao XW, Dai DH, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties. Addit Manuf. 2019;29.
  • Xinwei L, Shi S, Shuang H, et al. Microstructure, solidification behavior and mechanical properties of Al-Si-Mg-Ti/TiC fabricated by selective laser melting. Addit Manuf. 2020;34; doi:10.1016/j.addma.2020.101326
  • Biffi CA, Bassani P, Fiocchi J, et al. Selective laser melting of AlCu-TiB2 alloy using pulsed wave laser emission mode: processability, microstructure and mechanical properties. Mater Design. 2021;204.
  • Wen XL, Wang QZ, Mu Q, et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties. Mater Sci Eng Struct Mater Prop Microstruct Process. 2019;745:319–325. doi:10.1016/j.msea.2018.12.072
  • Li XP, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017;129:183–193. doi:10.1016/j.actamat.2017.02.062
  • Ren H, Liu Y, Sun Q, et al. Promoting strengthening and grain refinement of aluminum alloy during wire and arc additive manufacturing by adding TiB2 particles. Mater Sci Eng A. 2023;888:145805, doi:10.1016/j.msea.2023.145805
  • Liu X, Liu Y, Zhou Z, et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC–TiH2. Mater Sci Eng A. 2021;813:141171. doi:10.1016/j.msea.2021.141171
  • Wei WH, Zhang Q, Wu WJ, et al. Agglomeration-free nanoscale TiC reinforced titanium matrix composites achieved by in-situ laser additive manufacturing. Scr Mater. 2020;187:310–316. doi:10.1016/j.scriptamat.2020.06.057
  • Mayer CR, Yang LW, Singh SS, et al. Anisotropy, size, and aspect ratio effects on micropillar compression of Al SiC nanolaminate composites. Acta Mater. 2016;114:25–32. doi:10.1016/j.actamat.2016.05.018
  • Jiao Y, Zhu J, Li X, et al. In-situ synthesis, microstructure and mechanism of SiC/Al–Mg–Si composites: Effects of Mg addition. Ceram Int. 2020;46(11, Part A):17675–17683. doi:10.1016/j.ceramint.2020.04.070
  • Chen X-H, Yan H. Solid–liquid interface dynamics during solidification of Al 7075–Al2O3np based metal matrix composites. Mater Design. 2016;94:148–158. doi:10.1016/j.matdes.2016.01.042
  • Sokoluk M, Cao C, Pan S, et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun. 2019;10(1):98, doi:10.1038/s41467-018-07989-y
  • Uhlmann DR, Chalmers B, Jackson KA. Interaction between particles and a solid-liquid interface. J Appl Phys. 1964;35(10):2986–2993. doi:10.1063/1.1713142
  • Shangguan D, Ahuja S, Stefanescu DM. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metall Trans A. 1992;23(2):669–680. doi:10.1007/BF02801184
  • Chernov A, Melnikova AM. Theory of the capture of solid inclusions during the growth of crystals from the melt. Sov Phys Crystallogr. 1976;21(4):369–373.
  • Bolling GF, Cissé J. A theory for the interaction of particles with a solidifying front. J Cryst Growth. 1971;10(1):56–66. doi:10.1016/0022-0248(71)90046-7
  • Stefanescu DM, Juretzko FR, Catalina A, et al. Particle engulfment and pushing by solidifying interfaces: Part II. Microgravity Exp Theor Anal Metall Mater Trans A. 1998;29:1697–1706. doi:10.1007/s11661-998-0092-3
  • Azouni MA, Casses P. Thermophysical properties effects on segregation during solidification. Adv Colloid Interface Sci. 1998;75(2):83–106. doi:10.1016/S0001-8686(97)00002-X
  • Kim JK, Rohatgi PK. An analytical solution of the critical interface velocity for the encapturing of insoluble particles by a moving solid/liquid interface. Metall Mater Trans A. 1998;29(1):351–358. doi:10.1007/s11661-998-0186-y
  • Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al–Zn–Mg–Cu matrix composite. Acta Mater. 2020;185:287–299. doi:10.1016/j.actamat.2019.11.068
  • Wang K, Jiang HY, Jia YW, et al. Nanoparticle-inhibited growth of primary aluminum in Al–10Si alloys. Acta Mater. 2016;103:252–263. doi:10.1016/j.actamat.2015.10.005
  • Dong B-X, Li Q, Wang Z-F, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos Part B: Eng. 2021;217:108912, doi:10.1016/j.compositesb.2021.108912
  • Du R, Gao Q, Wu S, et al. Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater Sci Eng A. 2018;721:244–250. doi:10.1016/j.msea.2018.02.099
  • Jin P, Liu Y, Li F, et al. Realization of structural evolution in grain boundary, solute redistribution and improved mechanical properties by adding TiCnps in wire and arc additive manufacturing 2219 aluminium alloy. J Mater Res Technol. 2021;11:834–848. doi:10.1016/j.jmrt.2021.01.030
  • Jin P, Liu Y, Li F, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy. Compos Part B: Eng. 2021;219:108921, doi:10.1016/j.compositesb.2021.108921
  • Jin P, Ren H, Liu Y, et al. Microstructural evolution and mechanical properties of 2219 aluminum alloy deposited by wire and Arc additive manufacturing. Adv Eng Mater. 2022;24(9):2101799, doi:10.1002/adem.202101799
  • Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol. 2015;76(9):1593–1606. doi:10.1007/s00170-014-6346-x
  • Sen S, Curreri P, Kaukler WF, et al. Dynamics of solid/liquid interface shape evolution near an insoluble particle – an X-ray transmission microscopy investigation. Metall Mater Trans A. 1997;28(10):2129–2135. doi:10.1007/s11661-997-0170-y
  • Ma K, Hu T, Yang H, et al. Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater. 2016;103:153–164. doi:10.1016/j.actamat.2015.09.017
  • Yang Q, Ma Y, Chen Z, et al. A new powder metallurgy routine to fabricate TiB2/Al–Zn–Mg–Cu nanocomposites based on composite powders with pre-embedded nanoparticles. Materialia. 2019;8:100458, doi:10.1016/j.mtla.2019.100458
  • Youssef YM, Dashwood RJ, Lee PD. Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs. Appl Sci Manuf. 2005;36(6):747–763. doi:10.1016/j.compositesa.2004.10.027
  • Jin P, Liu Y, Sun Q. Evolution of crystallographic orientation, columnar to equiaxed transformation and mechanical properties realized by adding TiCps in wire and arc additive manufacturing 2219 aluminum alloy. Addit Manuf. 2021;39:101878, doi:10.1016/j.addma.2021.101878
  • Porter DA, Easterling KE. Phase transformations in metals and alloys (Revised Reprint) 2009.
  • Hu T, Ma K, Topping TD, et al. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61(6):2163–2178. doi:10.1016/j.actamat.2012.12.037
  • Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science. 1999;286(5448):2317–2319. doi:10.1126/science.286.5448.2317
  • Deschamps A, Fribourg G, Bréchet Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy. Acta Mater. 2012;60(5):1905–1916. doi:10.1016/j.actamat.2012.01.002