480
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Searching optimal process parameters for desired layer geometry in wire-laser directed energy deposition based on machine learning

, , &
Article: e2352066 | Received 24 Jan 2024, Accepted 30 Apr 2024, Published online: 12 Jun 2024

Reference

  • Cai Y, Xiong J, Chen H, et al. A review of in-situ monitoring and process control system in metal-based laser additive manufacturing. J Manuf Syst. 2023;70:309–326. doi:10.1016/j.jmsy.2023.07.018
  • Yi H, Luo J, Liu M, et al. Metal droplet printing of tube with high-quality inner surface via helical printing trajectory and soluble support. Virtual Phys Prototyp. 2022;17(3):582–598. doi:10.1080/17452759.2022.2058307
  • Xiong J, Wen C. Arc plasma, droplet, and forming behaviors in bypass wire arc-directed energy deposition. Addit Manuf. 2023;70:103558. doi:10.1016/j.addma.2023.103558
  • Gong G, Ye J, Chi Y, et al. Research status of laser additive manufacturing for metal: a review. J Mater Res Technol. 2021;15:855–884. doi:10.1016/j.jmrt.2021.08.050
  • Byron BM, Paul G, Glen S, et al. Metal additive manufacturing in aerospace: a review. Mater Design. 2021;209:110008. doi:10.1016/j.matdes.2021.110008
  • Nana KA, Nima H, Sophie P. Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties. Mater Design. 2022;223:111245. doi:10.1016/j.matdes.2022.111245
  • Nouri A, Shirvanc AR, Li Y, et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review. J Mater Sci Technol. 2021;94:196–215. doi:10.1016/j.jmst.2021.03.058
  • Huang W, Chen S, Xiao J, et al. Investigation of filler wire melting and transfer behaviors in laser welding with filler wire. Opt Laser Technol. 2021;134:106589. doi:10.1016/j.optlastec.2020.106589
  • Huang W, Chen S, Xiao J, et al. Laser wire-feed metal additive manufacturing of the Al alloy. Opt Laser Technol. 2021;134:106627. doi:10.1016/j.optlastec.2020.106627
  • Dai G, Min J, Lu H, et al. Microstructural evolution and performance improvement mechanism of Ti-6Al-4V fabricated by oscillating-wire laser additive manufacturing. J Mater Res Technol. 2023;24:7021–7039. doi:10.1016/j.jmrt.2023.04.261
  • Le VT, Doan QT, Mai DS, et al. Prediction and optimization of processing parameters in wire and arc-based additively manufacturing of 316L stainless steel. J Braz Soc Mech. 2022;44:394. doi:10.1007/s40430-022-03698-2
  • Guo C, He S, Yue H, et al. Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition. Opt Laser Technol. 2021;134:106607. doi:10.1016/j.optlastec.2020.106607
  • Xiong J, Zhang G, Hu J, et al. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf. 2014;25:157–163. doi:10.1007/s10845-012-0682-1
  • Oh WJ, Lee CM, Kim DH. Prediction of deposition bead geometry in wire arc additive manufacturing using machine learning. J Mater Res Technol. 2022;20:4283–4296. doi:10.1016/j.jmrt.2022.08.154
  • Akbari P, Ogoke F, Kao NY, et al. MeltpoolNet: melt pool characteristic prediction in Metal Additive Manufacturing using machine learning. Addit Manuf. 2022;55:102817. doi:10.1016/j.addma.2022.102817
  • Hong TL, Lin PC, Chen JZ, et al. Data-driven models for predictions of geometric characteristics of bead fabricated by selective laser melting. J Intell Manuf. 2023;34:1241–1257. doi:10.1007/s10845-021-01845-5
  • Zhu X, Jiang F, Guo C, et al. Prediction of melt pool shape in additive manufacturing based on machine learning methods. Opt Laser Technol. 2023;159:108964. doi:10.1016/j.optlastec.2022.108964
  • Liu S, Brice C, Zhang X. Interrelated process-geometry-microstructure relationships for wire-feed laser additive manufacturing. Mater Today Commun. 2022;31:103794. doi:10.1016/j.mtcomm.2022.103794
  • Xiong J, Zhang G, Hu J, et al. Forecasting process parameters for GMAW-based rapid manufacturing using closed-loop iteration based on neural network. Int J Adv Manuf Tech. 2013;69:743–751. doi:10.1007/s00170-013-5038-2
  • Zhao M, Wei H, Mao Y, et al. Predictions of additive manufacturing process parameters and molten pool dimensions with a physics-informed deep learning model. Engineering. 2023;23:181–195. doi:10.1016/j.eng.2022.09.015
  • Cai Y, Wang Y, Chen H, et al. Molten pool behaviors and forming characteristics in wire-laser directed energy deposition with beam oscillation. J Mater Process Tech. 2024;326:118326. doi:10.1016/j.jmatprotec.2024.118326
  • Deng L, Feng B, Zhang Y. An optimization method for multi-objective and multi-factor designing of a ceramic slurry: combining orthogonal experimental design with artificial neural networks. Ceram Int. 2018;44:15918–15923. doi:10.1016/j.ceramint.2018.06.010
  • Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(3):e1301. doi:10.1002/widm.1301
  • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–288. doi:10.1111/j.2517-6161.1996.tb02080.x
  • Rasmussen CE. Gaussian processes in machine learning. In: Summer school on machine learning. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 63–71, Vo. 3176. doi:10.1007/978-3-540-28650-9_4
  • Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi:10.1023/A:1010933404324
  • Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–1554. doi:10.1162/neco.2006.18.7.1527
  • Su H, Li X, Yang B, et al. Wavelet support vector machine-based prediction model of dam deformation. Mech Syst Signal Pr. 2018;110:412–427. doi:10.1016/j.ymssp.2018.03.022
  • Sing LS, Kuo CN, Shih CT, et al. Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys Prototyp. 2021;16(3):372–386. doi:10.1080/17452759.2021.1944229
  • Xian H, Che J. Unified whale optimization algorithm based multi-kernel SVR ensemble learning for wind speed forecasting. Appl Soft Comput. 2022;130:109690. doi:10.1016/j.asoc.2022.109690
  • Sun X, Han X, Liu C, et al. MOPSO-based structure optimization on RPV sealing performance with machine learning method. Int J Press Vessels Pip. 2023;206:105059. doi:10.1016/j.ijpvp.2023.105059
  • Akbar M, Irohara T. NSGA families for solving a dual resource-constrained problem to optimize the total tardiness and labor productivity in the spirit of sustainability. Comput Ind Eng. 2024;188:109883. doi:10.1016/j.cie.2024.109883
  • Miguel MC, Javier MT, Pablo EO. Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation. Eng Appl Artif Intell. 2023;126:106770. doi:10.1016/j.engappai.2023.106770
  • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–197. doi:10.1109/4235.996017
  • Bag S, De A, DebRoy T. A genetic algorithm-assisted inverse convective heat transfer model for tailoring weld geometry. Mater Manuf Process. 2009;24(3):384–397. doi:10.1080/10426910802679915
  • Mienye ID, Sun Y, Wang Z. Prediction performance of improved decision tree-based algorithms: a review. Procedia Manuf. 2019;35:698–703. doi:10.1016/j.promfg.2019.06.011