408
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accelerated improvement in tensile superelasticity of electron beam directed energy deposition manufactured NiTi alloys by artificial thermal cycling combined with low temperature aging treatment

, , , , , , , & show all
Article: e2352782 | Received 19 Mar 2024, Accepted 01 May 2024, Published online: 20 May 2024

References

  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Fadlallah SA, El-Bagoury N, Gad El-Rab SMF, et al. An overview of NiTi shape memory alloy: corrosion resistance and antibacterial inhibition for dental application. J Alloys Compd. 2014;583:455–464. doi:10.1016/j.jallcom.2013.08.029
  • Bansiddhi A, Sargeant TD, Stupp SI, et al. Porous NiTi for bone implants: a review. Acta Biomater. 2008;4:773–782. doi:10.1016/j.actbio.2008.02.009
  • Xi R, Jiang H, Li G, et al. In-situ alloying of NiTiNb ternary shape memory alloys via laser powder bed fusion using pre-alloyed NiTi and elemental Nb powders: microstructure, phase transformation behavior and functional properties. Addit Manuf. 2024;79:103933. doi:10.1016/j.addma.2023.103933
  • Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–1113. doi:10.1016/j.matdes.2013.11.084
  • Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • Xi R, Jiang H, Kustov S, et al. Influence of Nb addition and process parameters on the microstructure and phase transformation behavior of NiTiNb ternary shape memory alloys fabricated by laser powder bed fusion. Scr Mater. 2023;222:114996. doi:10.1016/j.scriptamat.2022.114996
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Wang K, Liu W, Li X, et al. Effect of hot isostatic pressing on microstructure and properties of high chromium K648 superalloy manufacturing by extreme high-speed laser metal deposition. J Mater Res Technol. 2024;28:3951–3959. doi:10.1016/j.jmrt.2023.12.280
  • Weinert K, Petzoldt V. Machining of NiTi based shape memory alloys. Mater Sci Eng A. 2004;378:180–184. doi:10.1016/j.msea.2003.10.344
  • Oliveira JP, Miranda RM, Braz Fernandes FM. Welding and joining of NiTi shape memory alloys: A review. Prog Mater Sci. 2017;88:412–466. doi:10.1016/j.pmatsci.2017.04.008
  • Xi R, Jiang H, Li G, et al. Effect of solution treatment on the microstructure, phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying. Int J Extrem Manuf. 2024;6:045002. doi:10.1088/2631-7990/ad35fc
  • Lu HZ, Ma HW, Cai WS, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021;219:117261. doi:10.1016/j.actamat.2021.117261
  • Saedi S, Turabi AS, Taheri Andani M, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd. 2016;677:204–210. doi:10.1016/j.jallcom.2016.03.161
  • Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials (Basel). 2018;11:1683. doi:10.3390/ma11091683
  • Malard B, Pilch J, Sittner P, et al. Microstructure and functional property changes in thin Ni-Ti wires heat treated by electric current — high energy x-ray and tem investigations. Funct Mater Lett. 2009;02:45–54. doi:10.1142/S1793604709000557
  • Wang X, Kustov S, Li K, et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015;82:224–233. doi:10.1016/j.actamat.2014.09.018
  • Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement. Scr Mater. 2019;162:230–234. doi:10.1016/j.scriptamat.2018.11.024
  • Prokoshkin SD, Khmelevskaya IY, Dobatkin SV, et al. Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Mater. 2005;53:2703–2714. doi:10.1016/j.actamat.2005.02.032
  • Tong YX, Guo B, Chen F, et al. Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing. Scr Mater. 2012;67:1–4. doi:10.1016/j.scriptamat.2012.03.005
  • Delville R, Malard B, Pilch J, et al. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plasticity. 2011;27:282–297. doi:10.1016/j.ijplas.2010.05.005
  • Chen J, Lei L, Fang G. Grain-size effects on the temperature-dependent elastocaloric cooling performance of polycrystalline NiTi alloy. J Alloys Compd. 2022;927:166951. doi:10.1016/j.jallcom.2022.166951
  • Zeng Z, Cong BQ, Oliveira JP, et al. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Microstruct Mech Properties, Addit Manuf. 2020;32:101051. doi:10.1016/j.addma.2020.101051
  • Li B, Wang L, Wang B, et al. Solidification characterization and its correlation with the mechanical properties and functional response of NiTi shape memory alloy manufactured by electron beam freeform fabrication. Addit Manuf. 2021;48:102468. doi:10.1016/j.addma.2021.102468
  • Zhou Q, Hayat MD, Chen G, et al. Selective electron beam melting of NiTi: microstructure, phase transformation and mechanical properties. Mater Sci Eng A. 2019;744:290–298. doi:10.1016/j.msea.2018.12.023
  • Xi R, Jiang H, Li G, et al. Effect of Fe addition on the microstructure, transformation behaviour and superelasticity of NiTi alloys fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18:e2126376. doi:10.1080/17452759.2022.2126376
  • Karaca HE, Saghaian SM, Ded G, et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 2013;61:7422–7431. doi:10.1016/j.actamat.2013.08.048
  • Kim JI, Miyazaki S. Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy. Acta Mater. 2005;53:4545–4554. doi:10.1016/j.actamat.2005.06.009
  • Feng B, Wang C, Zhang Q, et al. Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys. Mater Sci Eng A. 2022;840:142965. doi:10.1016/j.msea.2022.142965
  • Gu D, Ma C. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites. Appl Surf Sci. 2018;441:862–870. doi:10.1016/j.apsusc.2018.01.317
  • Zhang M, Fang X, Wang Y, et al. High superelasticity NiTi fabricated by cold metal transfer based wire arc additive manufacturing. Mater Sci Eng A. 2022;840:143001. doi:10.1016/j.msea.2022.143001
  • Pu Z, Du D, Zhang D, et al. Study on the role of carbon in modifying second phase and improving tensile properties of NiTi shape memory alloys fabricated by electron beam directed energy deposition. Additive Manuf. 2023;75:103733. doi:10.1016/j.addma.2023.103733
  • Pu Z, Du D, Wang K, et al. Microstructure, phase transformation behavior and tensile superelasticity of NiTi shape memory alloys fabricated by the wire-based vacuum additive manufacturing. Mater Sci Eng A. 2021;812:141077. doi:10.1016/j.msea.2021.141077
  • Dutkiewicz J, Rogal Ł, Kalita D, et al. Microstructure, mechanical properties, and martensitic transformation in NiTi shape memory alloy fabricated using electron beam additive manufacturing technique. J Mater Eng Perform. 2022.
  • Pu Z, Du D, Zhang D, et al. Improvement of tensile superelasticity by aging treatment of NiTi shape memory alloys fabricated by electron beam wire-feed additive manufacturing. J Mater Sci Technol. 2023;145:185–196. doi:10.1016/j.jmst.2022.10.050
  • Christian J. The theory of transformations in metals and alloys. Newnes; 2002.
  • Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002;50:4643–4657. doi:10.1016/S1359-6454(02)00315-4
  • Wang X, Li K, Schryvers D, et al. R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti–50.8at.% Ni thin wire. Scr Mater. 2014: 21–24. doi:10.1016/j.scriptamat.2013.10.006
  • Chen L, Li J, Zhang Y, et al. Effect of low-temperature pre-deformation on precipitation behavior and microstructure of a Zr-Sn-Nb-Fe-Cu-O alloy during fabrication. J Nucl Sci Technol. 2016;53:496–507. doi:10.1080/00223131.2015.1059776
  • Ham FS. Stress-Assisted precipitation on dislocations. J Appl Phys. 1959;30:915–926. doi:10.1063/1.1735262
  • Douin J, Donnadieu P, Epicier T, et al. Stress field around precipitates: direct measurement and relation with the behavior of dislocations. Mater Sci Eng A. 2001: 270–273. doi:10.1016/S0921-5093(01)01103-0
  • Ren X, Miura N, Zhang J, et al. A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mater Sci Eng A. 2001;312:196–206. doi:10.1016/S0921-5093(00)01876-1
  • Wang X, Verlinden B, Kustov S. Multi-stage martensitic transformation in Ni-rich NiTi shape memory alloys. Funct Mater Lett. 2017;10:1740004. doi:10.1142/S1793604717400045
  • Zhou Y, Zhang J, Fan G, et al. Origin of 2-stage R-phase transformation in low-temperature aged Ni-rich Ti–Ni alloys. Acta Mater. 2005;53:5365–5377. doi:10.1016/j.actamat.2005.08.013
  • Wang X, Li C, Verlinden B, et al. Effect of grain size on aging microstructure as reflected in the transformation behavior of a low-temperature aged Ti–50.8at.% Ni alloy. Scr Mater. 2013;69:545–548. doi:10.1016/j.scriptamat.2013.06.023