850
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Qualify-as-you-go: sensor fusion of optical and acoustic signatures with contrastive deep learning for multi-material composition monitoring in laser powder bed fusion process

ORCID Icon, ORCID Icon, , &
Article: e2356080 | Received 06 Feb 2024, Accepted 11 May 2024, Published online: 27 May 2024

References

  • Ahmed N, Barsoum I, Haidemenopoulos G, et al. Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review (in English). J Manuf Process. 2022;75:415–434. doi:10.1016/j.jmapro.2021.12.064
  • Sanchez-Mata O, Wang X, Muniz-Lerma JA, et al. Dependence of mechanical properties on crystallographic orientation in nickel-based superalloy Hastelloy X fabricated by laser powder bed fusion. J Alloys Compd. 2021;865:158868. doi:10.1016/j.jallcom.2021.158868
  • Wang L, Song Z, Zhang X, et al. Developing ductile and isotropic Ti alloy with tailored composition for laser powder bed fusion. Addit Manuf. 2022;52:102656. doi:10.1016/j.addma.2022.102656
  • Rometsch PA, Zhu Y, Wu X, et al. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Des. 2022;219:110779. doi:10.1016/j.matdes.2022.110779
  • Zhou W, Kousaka T, Moriya S-i, et al. Fabrication of a strong and ductile CuCrZr alloy using laser powder bed fusion. Addit Manuf Lett. 2023;5:100121. doi:10.1016/j.addlet.2023.100121
  • Zhang X, Pan T, Chen Y, et al. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition. J Mater Sci Technol. 2021;80:100–116. doi:10.1016/j.jmst.2020.11.048
  • Chen J, Yang Y, Song C, et al. Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater Sci Eng A. 2019;752:75–85. doi:10.1016/j.msea.2019.02.097
  • Rodrigues TA, Bairrão N, Farias FWC, et al. Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Mater Des. 2022;213:110270. doi:10.1016/j.matdes.2021.110270
  • Leedy KD, Stubbins JF. Copper alloy–stainless steel bonded laminates for fusion reactor applications: crack growth and fatigue. Mat Sci Eng a-Struct. 2001;297(1-2):19–25. doi:10.1016/S0921-5093(00)01274-0
  • Wang S, Ning J, Zhu L, et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater Today. 2022;59:133–160. doi:10.1016/j.mattod.2022.08.014
  • Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater Des. 2020;187:108385. doi:10.1016/j.matdes.2019.108385
  • Cerniglia D, Scafidi M, Pantano A, et al. Inspection of additive-manufactured layered components. Ultrasonics. 2015;62:292–298. doi:10.1016/j.ultras.2015.06.001
  • Acevedo R, Sedlak P, Kolman R, et al. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: state of the art review. J Mater Res Technol. 2020;9(4):9457–9477. doi:10.1016/j.jmrt.2020.05.092
  • Shah P, Racasan R, Bills P. Comparison of different additive manufacturing methods using computed tomography. Case Stud Nondestr Test Eval. 2016;6:69–78. doi:10.1016/j.csndt.2016.05.008
  • Tammas-Williams S, Withers PJ, Todd I, et al. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci Rep. 2017;7(1):7308. doi:10.1038/s41598-017-06504-5
  • Mazumder J. Design for metallic additive manufacturing machine with capability for “Certify as You Build”. Procedia CIRP. 2015;36:187–192. doi:10.1016/j.procir.2015.01.009
  • Zhu L, Xue P, Lan Q, et al. Recent research and development status of laser cladding: A review. Opt Laser Technol. 2021;138:106915. doi:10.1016/j.optlastec.2021.106915
  • Wang C, Tan X, Tor SB, et al. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit Manuf. 2020;36:101538. doi:10.1016/j.addma.2020.101538
  • Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification. JOM. 2017;69:439–455. doi:10.1007/s11837-017-2265-2
  • Everton SK, Hirsch M, Stravroulakis P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431–445. doi:10.1016/j.matdes.2016.01.099
  • Hossain MS, Taheri H. In situ process monitoring for additive manufacturing through acoustic techniques. J Mater Eng Perform. 2020;29(10):6249–6262. doi:10.1007/s11665-020-05125-w
  • Lane B, Grantham S, Yeung H, et al. Performance characterization of process monitoring sensors on the NIST additive manufacturing metrology testbed. 2017 International solid freeform fabrication symposium. University of Texas at Austin; 2017. https://api.semanticscholar.org/CorpusID:55777435.
  • Montazeri M, Rao P. Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach. J Manuf Sci Eng. 2018;140(9):091002. doi:10.1115/1.4040264
  • Pandiyan V. Deep learning-based monitoring of laser powder bed fusion process on variable time-scales using heterogeneous sensing and operando X-ray radiography guidance. Addit Manuf. 2022;58:103007. doi:10.1016/j.addma.2022.103007
  • Özel T, Shaurya A, Altay A, et al. Process monitoring of meltpool and spatter for temporal-spatial modeling of laser powder bed fusion process. Procedia CIRP. 2018;74:102–106. doi:10.1016/j.procir.2018.08.049
  • Pandiyan V, Wróbel R, Leinenbach C, et al. Optimizing in-situ monitoring for laser powder bed fusion process: deciphering acoustic emission and sensor sensitivity with explainable machine learning. J Mater Process Technol. 2023: 118144. doi:10.1016/j.jmatprotec.2023.118144
  • Pandiyan V, Drissi-Daoudi R, Shevchik S, et al. Analysis of time, frequency and time-frequency domain features from acoustic emissions during Laser Powder-Bed fusion process. Procedia CIRP. 2020;94:392–397. doi:10.1016/j.procir.2020.09.152
  • Imani F, Gaikwad A, Montazeri M, et al. Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging. J Manuf Sci Eng. 2018;140(10):101009. doi:10.1115/1.4040615
  • McCann R, Obeidi MA, Hughes C, et al. In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Addit Manuf. 2021;45:102058. doi:10.1016/j.addma.2021.102058
  • Taherkhani K, Ero O, Liravi F, et al. On the application of in-situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion: A review. J Manuf Process. 2023;99:848–897. doi:10.1016/j.jmapro.2023.05.048
  • Cai Y, Xiong J, Chen H, et al. A review of in-situ monitoring and process control system in metal-based laser additive manufacturing. J Manuf Syst. 2023;70:309–326. doi:10.1016/j.jmsy.2023.07.018
  • Lane B, Zhirnov I, Mekhontsev S, et al. Transient laser energy absorption, co-axial melt pool monitoring, and relationship to melt pool morphology. Addit Manuf. 2020;36:101504. doi:10.1016/j.addma.2020.101504
  • Schwerz C, Nyborg L. Linking in situ melt pool monitoring to melt pool size distributions and internal flaws in laser powder bed fusion. Metals (Basel). 2021;11(11):1856. doi:10.3390/met11111856
  • Khanzadeh M, Tian W, Yadollahi A, et al. Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams. Addit Manuf. 2018;23:443–456. doi:10.1016/j.addma.2018.08.014
  • Bertoli US, Guss G, Wu S, et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Des. 2017;135:385–396. doi:10.1016/j.matdes.2017.09.044
  • Yang Z, Zhu L, Wang S, et al. Effects of ultrasound on multilayer forming mechanism of Inconel 718 in directed energy deposition. Addit Manuf. 2021;48:102462. doi:10.1016/j.addma.2021.102462
  • Ashby A, Guss G, Ganeriwala RK, et al. Thermal history and high-speed optical imaging of overhang structures during laser powder bed fusion: A computational and experimental analysis. Addit Manuf. 2022;53:102669. doi:10.1016/j.addma.2022.102669
  • Forien J-B, Calta NP, DePond PJ, et al. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf. 2020;35:101336. doi:10.1016/j.addma.2020.101336
  • Gutknecht K, Cloots M, Wegener K. Relevance of single channel signals for two-colour pyrometer process monitoring of laser powder bed fusion. Int J Mechatron Manuf Syst. 2021;14(2):111–127. doi:10.1504/IJMMS.2021.119152
  • Vallabh CKP, Zhao X. Melt pool temperature measurement and monitoring during laser powder bed fusion based additive manufacturing via single-camera two-wavelength imaging pyrometry (STWIP). J Manuf Process. 2022;79:486–500. doi:10.1016/j.jmapro.2022.04.058
  • Mao Z, Feng W, Ma H, et al. Continuous online flaws detection with photodiode signal and melt pool temperature based on deep learning in laser powder bed fusion. Opt Laser Technol. 2023;158:108877. doi:10.1016/j.optlastec.2022.108877
  • Mitchell JA, Ivanoff TA, Dagel D, et al. Linking pyrometry to porosity in additively manufactured metals. Addit Manuf. 2020;31:100946. doi:10.1016/j.addma.2019.100946
  • Lapointe S, Guss G, Reese Z, et al. Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries. Addit Manuf. 2022;53:102687. doi:10.1016/j.addma.2022.102687
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • Fisher BA, Lane B, Yeung H, et al. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manuf Lett. 2018;15:119–121. doi:10.1016/j.mfglet.2018.02.009
  • Zhao C, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep. 2017;7(1):1–11. doi:10.1038/s41598-016-0028-x
  • Mazzoleni L, Demir AG, Caprio L, et al. Real-time observation of melt pool in selective laser melting: spatial, temporal, and wavelength resolution criteria. IEEE Trans Instrum Meas. 2020;69(4):1179–1190. doi:10.1109/TIM.2019.2912236
  • Drissi-Daoudi R, Pandiyan V, Logé R, et al. Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning. Virtual Phys Prototyp. 2022;17(2):181–204. doi:10.1080/17452759.2022.2028380
  • Gaikwad A, Williams RJ, de Winton H, et al. Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing. Mater Des. 2022;221:110919. doi:10.1016/j.matdes.2022.110919
  • Khanzadeh M, Chowdhury S, Marufuzzaman M, et al. Porosity prediction: supervised-learning of thermal history for direct laser deposition. J Manuf Syst. 2018;47:69–82. doi:10.1016/j.jmsy.2018.04.001
  • Ye D, Fuh Y, Zhang Y, et al. Defects recognition in selective laser melting with acoustic signals by SVM based on feature reduction. IOP Conf Ser: Mater Sci Eng. 2018;436(1):012020. doi:10.1088/1757-899X/436/1/012020
  • Ye D, Hong GS, Zhang Y, et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int J Adv Manuf Technol. 2018;96:2791–2801. doi:10.1007/s00170-018-1728-0
  • Pandiyan V, Drissi-Daoudi R, Shevchik S, et al. Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions. Virtual Phys Prototyp. 2021;16(4):481–497. doi:10.1080/17452759.2021.1966166
  • Shevchik SA, Kenel C, Leinenbach C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit Manuf. 2018;21:598–604. doi:10.1016/j.addma.2017.11.012
  • Becker P, Roth C, Rönnau A, et al. Porosity detection in powder bed fusion additive manufacturing with convolutional neural networks. doi: 10.18178/wcse.2022.04.117.
  • Pandiyan V, Drissi-Daoudi R, Shevchik S, et al. Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. J Mater Process Technol. 2022;303:117531. doi:10.1016/j.jmatprotec.2022.117531
  • Shevchik SA, Masinelli G, Kenel C, et al. Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Trans Ind Inf. 2019;15(9):5194–5203. doi:10.1109/TII.2019.2910524
  • Xing W, Chu X, Lyu T, et al. Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process. J Manuf Process. 2022;74:486–499. doi:10.1016/j.jmapro.2021.12.030
  • Kwon O, Kim HG, Ham MJ, et al. A deep neural network for classification of melt-pool images in metal additive manufacturing. J Intell Manuf. 2020;31:375–386. doi:10.1007/s10845-018-1451-6
  • Pandiyan V, Wróbel R, Richter RA, et al. Monitoring of Laser Powder Bed Fusion process by bridging dissimilar process maps using deep learning-based domain adaptation on acoustic emissions. Addit Manuf. 2024: 103974. doi:10.1016/j.addma.2024.103974
  • Pandiyan V, Wróbel R, Richter RA, et al. Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed Fusion process for in-situ monitoring. Mater Des. 2023;235:112458. doi:10.1016/j.matdes.2023.112458
  • Khosla P, et al. Supervised contrastive learning. Adv Neural Inf Process Syst. 2020;33:18661–18673. doi:10.48550/arXiv.2004.11362
  • Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. International Conference on Machine Learning. 2020;2020: PMLR:1597–1607. doi:10.48550/arXiv.2002.05709
  • Spijkervet J, Burgoyne JA. Contrastive learning of musical representations. arXiv preprint arXiv:2103.09410; 2021. doi: 10.48550/arXiv.2103.09410.
  • Pandiyan V, Cui D, Le-Quang T, et al. In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning. J Manuf Process. 2022;81:1064–1075. doi:10.1016/j.jmapro.2022.07.033
  • Ge W. Deep metric learning with hierarchical triplet loss. Proceedings of the European Conference on Computer Vision (ECCV); 2018. p. 269–285. doi:10.48550/arXiv.1810.06951
  • Dong X, Shen J. Triplet loss in siamese network for object tracking. Proceedings of the European Conference on Computer Vision (ECCV); 2018. p. 472–488. doi:10.1007/978-3-030-01261-8_28
  • Sun Y, et al. Circle loss: A unified perspective of pair similarity optimization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 6398–6407. doi:10.48550/arXiv.2002.10857
  • Xiao R. Adaptive margin circle loss for speaker verification. arXiv preprint arXiv:2106.08004; 2021. doi:10.48550/arXiv.2106.08004
  • Li J, Cai Y, Yan F, et al. Porosity and liquation cracking of dissimilar Nd: YAG laser welding of SUS304 stainless steel to T2 copper. Opt Laser Technol. 2020;122:105881. doi:10.1016/j.optlastec.2019.105881
  • Xiao P, Wang L, Tang Y, et al. Effect of wire composition on microstructure and penetration crack of laser-cold metal transfer hybrid welded Cu and stainless steel joints. Mater Chem Phys. 2023;299:127480. doi:10.1016/j.matchemphys.2023.127480
  • Gao Z, Yang Y, Wang L, et al. Formation mechanism and control of solidification cracking in laser-welded joints of steel/copper dissimilar metals. Metals (Basel). 2022;12(7):1147. doi:10.3390/met12071147
  • Chen S, Yu X, Huang J, et al. Interfacial ferrite band formation to suppress intergranular liquid copper penetration of solid steel. J Alloys Compd. 2019;773:719–729. doi:10.1016/j.jallcom.2018.09.282
  • Paszke A, et al. Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019: 8026–8037. doi:10.48550/arXiv.1912.01703
  • Zhou Z-H, Zhou Z-H. Ensemble learning. Singapore: Springer; 2021. doi:10.1007/978-0-387-73003-5_293
  • Chen T, He T, Benesty M, et al. Xgboost: Extreme Gradient Boosting. R package version 0.4-2 1, 2015; (4):1–4.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-Learn: Machine Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830.