421
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electron beam powder bed fusion enables crack-free, high-strength and sufficiently ductile chemically complex intermetallic alloys

, , , , , ORCID Icon, , , & show all
Article: e2356733 | Received 19 Feb 2024, Accepted 13 May 2024, Published online: 27 May 2024

References

  • Yan Y, Du JS, Gilroy KD, et al. Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater. 2017;29(14):1605997. doi:10.1002/adma.201605997
  • Rößner L, Armbrüster M. Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 2019;9(3):2018–2062. doi:10.1021/acscatal.8b04566
  • David SA, Deevi SC. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications. Sci Technol Weld Joining. 2017;22(8):681–705. doi:10.1080/13621718.2017.1304859
  • Kim S-H, Kim H, Kim NJ. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature. 2015;518(7537):77–79. doi:10.1038/nature14144
  • Ward-Close CM, Minor R, Doorbar PJ. Intermetallic-matrix composites—a review. Intermetallics. 1996;4(3):217–229. doi:10.1016/0966-9795(95)00037-2
  • Juechter V, Franke MM, Merenda T, et al. Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications. Addit Manuf. 2018;22:118–126. doi:10.1016/j.addma.2018.05.008
  • Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191–215. doi:10.1002/adem.201200231
  • Deevi SC. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog Mater Sci. 2021;118:100769. doi:10.1016/j.pmatsci.2020.100769
  • Oliveira JP, Miranda RM, Braz Fernandes FM. Welding and joining of NiTi shape memory alloys: a review. Prog Mater Sci. 2017;88:412–466. doi:10.1016/j.pmatsci.2017.04.008
  • Yang T, Cao BX, Zhang TL, et al. Chemically complex intermetallic alloys: a new frontier for innovative structural materials. Mater Today. 2022;52:161–174. doi:10.1016/j.mattod.2021.12.004
  • Zhou N, Jiang S, Huang T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci Bull. 2019;64(12):856–864. doi:10.1016/j.scib.2019.05.007
  • Feng R, Rao Y, Liu C, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nat Commun. 2021;12(1):3588. doi:10.1038/s41467-021-23689-6
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937. doi:10.1126/science.aas8815
  • Yang T, Zhao YL, Li WP, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science. 2020;369:427–432. doi:10.1126/science.abb6830
  • Abdulhameed O, Al-Ahmari A, Ameen W, et al. Additive manufacturing: challenges, trends, and applications. Adv Mech Eng. 2019;11(2):1–27. doi:10.1177/1687814018822880
  • Attaran M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz. 2017;60(5):677–688. doi:10.1016/j.bushor.2017.05.011
  • Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials (Basel). 2017;10(6):672. doi:10.3390/ma10060672
  • Ma P, Fang Y, Wei S, et al. Microstructure and mechanical properties of AlCoCrFeMnNi HEAs fabricated by selective laser melting. J Mater Res Technol. 2023;25:7090–7100. doi:10.1016/j.jmrt.2023.07.124
  • Jia H, Sun H, Wang H, et al. Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol. 2021;113(9-10):2413–2435. doi:10.1007/s00170-021-06810-3
  • Körner C. Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev. 2016;61(5):361–377. doi:10.1080/09506608.2016.1176289
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4 V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22(12):3872–3883. doi:10.1007/s11665-013-0658-0
  • Wang J, Han Y, Zhao Y, et al. Microstructure and properties of WC-12Co cemented carbide fabricated via selective electron beam melting. Int J Refract Met Hard Mater. 2022;106:105847. doi:10.1016/j.ijrmhm.2022.105847
  • Yao Y, Xing C, Peng H, et al. Solidification microstructure and tensile deformation mechanisms of selective electron beam melted Ni3Al-based alloy at room and elevated temperatures. Mater Sci Eng A. 2021;802:140629. doi:10.1016/j.msea.2020.140629
  • Chen Y, Yue H, Wang X. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. Mater Sci Eng A. 2018;713:195–205. doi:10.1016/j.msea.2017.12.020
  • Zhou Q, Hayat MD, Chen G, et al. Selective electron beam melting of NiTi: microstructure, phase transformation and mechanical properties. Mater Sci Eng A. 2019;744:290–298. doi:10.1016/j.msea.2018.12.023
  • Bian H, Aoyagi K, Zhao Y, et al. Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting. Addit Manuf. 2020;32:100982. doi:10.1016/j.addma.2019.100982
  • Zhang M, Zhou X, Wang D, et al. Additive manufacturing of in-situ strengthened dual-phase AlCoCuFeNi high-entropy alloy by selective electron beam melting. J Alloys Compd. 2022;893; doi:10.1016/j.jallcom.2021.162259
  • Grubova IY, Surmenev RA, Neyts EC, et al. Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy. ACS Omega. 2023;8(30):27519–27533. doi:10.1021/acsomega.3c03157
  • Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018;144:552–560. doi:10.1016/j.actamat.2017.10.072
  • Aboulkhair NT, Everitt NM, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;1-4:77–86. doi:10.1016/j.addma.2014.08.001
  • Wang P, Huang P, Ng FL, et al. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater Des. 2019;168:107576. doi:10.1016/j.matdes.2018.107576
  • Mu Y, He L, Deng S, et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta Mater. 2022;232:117975. doi:10.1016/j.actamat.2022.117975
  • Huang J, Li W, He J, et al. Dual heterogeneous structure facilitating an excellent strength-ductility combination in an additively manufactured multi-principal-element alloy. Mater Res Lett. 2022;10(9):575–584. doi:10.1080/21663831.2022.2067790
  • Lu H, Deng W, Luo K, et al. Tailoring microstructure of additively manufactured Ti6Al4 V titanium alloy using hybrid additive manufacturing technology. Addit Manuf. 2023;63:103416. doi:10.1016/j.addma.2023.103416
  • Ahn D-G, Lee H-J. Investigation of novel metal additive manufacturing process using plasma electron beam based on powder bed fusion. CIRP Ann. 2019;68(1):245–248. doi:10.1016/j.cirp.2019.04.124
  • Zhang W, Yu H, Huang Q-A. Paper presented at the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011.
  • Feng R, Zhang C, Gao MC, et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun. 2021;12(1):4329. doi:10.1038/s41467-021-24523-9
  • Xu P, Lu G, Zhang L, et al. Effect of holding time on the growth morphology of in-situ TiB2 particles. Mater Today Commun. 2021;29:102953. doi:10.1016/j.mtcomm.2021.102953
  • Fujieda T, Shiratori H, Kuwabara K, et al. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater Lett. 2017;189:148–151. doi:10.1016/j.matlet.2016.11.026
  • Peng C, Jia Y, Liang J, et al. Electron beam melting of (FeCoNi)86Al7Ti7 high-entropy alloy. J Alloys Compd. 2023;960:170752. doi:10.1016/j.jallcom.2023.170752
  • Wu S, Lei Z, Li B, et al. Hot cracking evolution and formation mechanism in 2195 Al-Li alloy printed by laser powder bed fusion. Addit Manuf. 2022;54:102762. doi:10.1016/j.addma.2022.102762
  • Guo B, Zhang Y, Yang Z, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing. Addit Manuf. 2022;55:102792. doi:10.1016/j.addma.2022.102792
  • Rappaz M, Drezet JM, Gremaud M. A new hot-tearing criterion. Metall Mater Trans A. 1999;30(2):449–455. doi:10.1007/s11661-999-0334-z
  • Han Q, Gu Y, Huang J, et al. Selective laser melting of Hastelloy X nanocomposite: effects of TiC reinforcement on crack elimination and strength improvement. Composites Part B Eng. 2020;202:108442. doi:10.1016/j.compositesb.2020.108442
  • Rappaz M, Jacot A, Boettinger WJ. Last-stage solidification of alloys: theoretical model of dendrite-arm and grain coalescence. Metall Mater Trans A. 2003;34(3):467–479. doi:10.1007/s11661-003-0083-3
  • Tytko D, Choi P-P, Klöwer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography. Acta Mater. 2012;60(4):1731–1740. doi:10.1016/j.actamat.2011.11.020
  • Detor A, Schuh C. Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater. 2007;55(12):4221–4232. doi:10.1016/j.actamat.2007.03.024
  • Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55(15):5129–5138. doi:10.1016/j.actamat.2007.05.047
  • Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci. 2014;18(4):253–261. doi:10.1016/j.cossms.2014.06.002
  • Pan C, Zhu D, Luo H, et al. Fabrication of high-performance CoCrNi medium entropy alloy by laser powder bed fusion: the effect of grain boundary segregation. Composites Part B Eng. 2023;253:110540. doi:10.1016/j.compositesb.2023.110540
  • Choudhuri D, Alam T, Borkar T, et al. Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr Mater. 2015;100:36–39. doi:10.1016/j.scriptamat.2014.12.006
  • Fujieda T, Shiratori H, Kuwabara K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater Lett. 2015;159:12–15. doi:10.1016/j.matlet.2015.06.046
  • Zhang Y, Fang X, Wang H, et al. Microstructure and low-cycle fatigue performance of selective electron beam melted Ti6Al4 V alloy. Int J Fatigue. 2022;163:107017. doi:10.1016/j.ijfatigue.2022.107017
  • Sun S-H, Koizumi Y, Kurosu S, et al. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 2014;64:154–168. doi:10.1016/j.actamat.2013.10.017
  • Li S, Li JY, Jiang ZW, et al. Controlling the columnar-to-equiaxed transition during directed energy deposition of Inconel 625. Addit Manuf. 2022;57:102958. doi:10.1016/j.addma.2022.102958
  • Xu L, Jia Y, Wang Z, et al. Dual precipitate simultaneous enhancement of tensile and fatigue strength in (FeCoNi)86Al7Ti7 high-entropy alloy fabricated using selective laser melting. J Mater Sci Technol. 2023;148:90–104. doi:10.1016/j.jmst.2022.09.068
  • Wen H, Topping TD, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013;61(8):2769–2782. doi:10.1016/j.actamat.2012.09.036
  • Zhang W, Wu J, Wen Y, et al. Characterization of different work hardening behavior in AISI 321 stainless steel and Hadfield steel. J Mater Sci. 2010;45(13):3433–3437. doi:10.1007/s10853-010-4369-8