545
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electron beam powder bed fusion of Ti-30Ta high-temperature shape memory alloy: microstructure and phase transformation behaviour

ORCID Icon, , ORCID Icon, , , , ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: e2358107 | Received 24 Feb 2024, Accepted 13 May 2024, Published online: 19 Jun 2024

References

  • Lagoudas DC. Shape memory alloys: modeling and engineering applications, 2008.
  • Otsuka K, editor. Shape memory materials. 1st ed. Cambridge: Cambridge University Press; 1999.
  • Duerig TW, Melton KN, Stöckel D, et al. Engineering aspects of shape memory alloys. Elsevier; 1990.
  • Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci. 2012;57:911–946. doi:10.1016/j.pmatsci.2011.11.001
  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 2005;50:511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev. 2010;55:257–315. doi:10.1179/095066010X12646898728363
  • Sehitoglu H, Patriarca L, Wu Y. Shape memory strains and temperatures in the extreme. Curr Opin Solid State Mater Sci. 2017;21:113–120. doi:10.1016/j.cossms.2016.06.005
  • Canadinc D, Trehern W, Ozcan H, et al. On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 2017;135:92–96. doi:10.1016/j.scriptamat.2017.03.025
  • Paulsen A, Dumlu H, Piorunek D, et al. Laboratory-scale processing and performance assessment of Ti–Ta high-temperature shape memory spring actuators. Shap Mem Superelasticity. 2021;7:222–234. doi:10.1007/s40830-021-00334-1
  • Zhang J, Rynko R, Frenzel J, et al. Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res. 2014;105:156–167. doi:10.3139/146.111010
  • Niendorf T, Krooß P, Batyrsina E, et al. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng, A. 2015;620:359–366. doi:10.1016/j.msea.2014.10.038
  • Chakraborty T, Rogal J, Drautz R. Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti-Ta alloys. Phys Rev B. 2016;94:224104. doi:10.1103/PhysRevB.94.224104
  • Buenconsejo PJS, Kim HY, Hosoda H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater. 2009;57:1068–1077. doi:10.1016/j.actamat.2008.10.041
  • Ferrari A, Paulsen A, Frenzel J, et al. Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Materials. 2018;2:073609. doi:10.1103/PhysRevMaterials.2.073609
  • Niendorf T, Krooß P, Batyrsina E, et al. On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys — a new concept for fatigue life extension. Funct Mater Lett. 2014;07:1450042. doi:10.1142/S1793604714500428
  • Maier HJ, Karsten E, Paulsen A, et al. Microstructural evolution and functional fatigue of a Ti–25Ta high-temperature shape memory alloy. J Mater Res. 2017;32:4287–4295. doi:10.1557/jmr.2017.319
  • Paulsen A, Frenzel J, Langenkämper D, et al. A kinetic study on the evolution of martensitic transformation behavior and microstructures in Ti–Ta high-temperature shape-memory alloys during aging. Shap Mem Superelasticity. 2019;5:16–31. doi:10.1007/s40830-018-00200-7
  • Kim HY, Ikehara Y, Kim JI, et al. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006;54:2419–2429. doi:10.1016/j.actamat.2006.01.019
  • Bönisch M, Calin M, Waitz T, et al. Thermal stability and phase transformations of martensitic Ti-Nb alloys. Sci Technol Adv Mater 2013;14:055004. doi:10.1088/1468-6996/14/5/055004
  • Niendorf T, Krooß P, Somsen C, et al. Cyclic degradation of titanium–tantalum high-temperature shape memory alloys — the role of dislocation activity and chemical decomposition. Funct Mater Lett. 2015;08:1550062. doi:10.1142/S1793604715500629
  • Ferrari A, Paulsen A, Langenkämper D, et al. Discovery of ω -free high-temperature Ti-Ta- X shape memory alloys from first-principles calculations. Phys Rev Materials. 2019;3:103605. doi:10.1103/PhysRevMaterials.3.103605
  • Buenconsejo PJS, Kim HY, Miyazaki S. Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 2011;64:1114–1117. doi:10.1016/j.scriptamat.2011.03.004
  • Kim HY, Fukushima T, Buenconsejo PJS, et al. Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater Sci Eng, A. 2011;528:7238–7246. doi:10.1016/j.msea.2011.06.021
  • Zheng XH, Sui JH, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scr Mater 2013;68:1008–1011. doi:10.1016/j.scriptamat.2013.03.008
  • Buenconsejo PJS, Kim HY, Miyazaki S. Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater. 2009;57:2509–2515. doi:10.1016/j.actamat.2009.02.007
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Hitzler L, Merkel M, Hall W, et al. A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv Eng Mater 2018;20:1700658. doi:10.1002/adem.201700658
  • Li N, Huang S, Zhang G, et al. Progress in additive manufacturing on new materials: a review. J Mater Sci Technol. 2019;35:242–269. doi:10.1016/j.jmst.2018.09.002
  • Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4 V and high-entropy alloys. Sci Technol Adv Mater. 2017;18:584–610. doi:10.1080/14686996.2017.1361305
  • Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • Alagha AN, Hussain S, Zaki W. Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems. Mater Des 2021;204:109654. doi:10.1016/j.matdes.2021.109654
  • Toker GP, Nematollahi M, Saghaian SE, et al. Shape memory behavior of NiTiHf alloys fabricated by selective laser melting. Scr Mater 2020;178:361–365. doi:10.1016/j.scriptamat.2019.11.056
  • Elahinia M, Shayesteh Moghaddam N, Amerinatanzi A, et al. Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 2018;145:90–94. doi:10.1016/j.scriptamat.2017.10.016
  • Gustmann T, Schwab H, Kühn U, et al. Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy. Mater Des 2018;153:129–138. doi:10.1016/j.matdes.2018.05.010
  • Gustmann T, Neves A, Kühn U, et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf. 2016;11:23–31. doi:10.1016/j.addma.2016.04.003
  • Laitinen V, Sozinov A, Saren A, et al. Laser powder bed fusion of Ni-Mn-Ga magnetic shape memory alloy. Addit Manuf. 2019;30:100891. doi:10.1016/j.addma.2019.100891
  • Scheibel F, Lauhoff C, Krooß P, et al. Additive manufacturing of Ni-Mn-Sn shape memory Heusler alloy – microstructure and magnetic properties from powder to printed parts. Materialia. 2023;29:101783. doi:10.1016/j.mtla.2023.101783
  • Lauhoff C, Fischer A, Sobrero C, et al. Additive manufacturing of Co-Ni-Ga high-temperature shape memory alloy: processability and phase transformation behavior. Metall Mater Trans A. 2020;51:1056–1061. doi:10.1007/s11661-019-05608-z
  • Lauhoff C, Sommer N, Vollmer M, et al. Excellent superelasticity in a Co-Ni-Ga high-temperature shape memory alloy processed by directed energy deposition. Mater Res Lett. 2020;8:314–320. doi:10.1080/21663831.2020.1756495
  • Ormanova M, Dechev D, Ivanov N, et al. Synthesis and characterization of Ti-Ta-shape memory surface alloys formed by the electron-beam additive technique. Coatings. 2022;12:678. doi:10.3390/coatings12050678
  • Xiao B, Jia W, Tang H, et al. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting. J Mater Sci Technol. 2022;108:54–63. doi:10.1016/j.jmst.2021.07.041
  • Xiao B, Jia W, Tang H, et al. Microstructure and mechanical properties of a newly developed WTaRe refractory alloy by selective electron beam melting. Addit Manuf. 2022;54:102738. doi:10.1016/j.addma.2022.102738
  • Ledford C, Fernandez-Zelaia P, Graening T, et al. Microstructure and high temperature properties of tungsten processed via electron beam melting additive manufacturing. Int J Refract Met Hard Mater. 2023;113:106148. doi:10.1016/j.ijrmhm.2023.106148
  • Golod VM, Sufiiarov VS. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization. IOP Conf Ser: Mater Sci Eng 2017;192:012009. doi:10.1088/1757-899X/192/1/012009
  • Lauhoff C, Arold T, Bolender A, et al. Microstructure of an additively manufactured Ti-Ta-Al alloy using novel pre-alloyed powder feedstock material. Addit Manuf Lett. 2023;6:100144. doi:10.1016/j.addlet.2023.100144
  • Schulze C, Weinmann M, Schweigel C, et al. Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb. Materials (Basel). 2018;11:124. doi:10.3390/ma11010124
  • Johannsen J, Lauhoff C, Stenzel M, et al. Laser beam powder bed fusion of novel biomedical titanium/niobium/tantalum alloys: powder synthesis, microstructure evolution and mechanical properties. Mater Des 2023:112265. doi:10.1016/j.matdes.2023.112265
  • Couret A, Allen M, Rackel MW, et al. Chemical heterogeneities in tungsten containing TiAl alloys processed by powder metallurgy. Materialia. 2021;18:101147. doi:10.1016/j.mtla.2021.101147
  • Brennan MC, Keist JS, Palmer TA. Defects in metal additive manufacturing processes. J Mater Eng Perform. 2021;30:4808–4818. doi:10.1007/s11665-021-05919-6
  • Chen G, Zhou Q, Zhao SY, et al. A pore morphological study of gas-atomized Ti-6Al-4 V powders by scanning electron microscopy and synchrotron X-ray computed tomography. Powder Technol. 2018;330:425–430. doi:10.1016/j.powtec.2018.02.053
  • Sola A, Nouri A. Microstructural porosity in additive manufacturing: the formation and detection of pores in metal parts fabricated by powder bed fusion. J Adv Manuf Process. 2019;1:10021. doi:10.1002/amp2.10021
  • Ferrari A, Kadletz PM, Chakraborty T, et al. Reconciling experimental and theoretical data in the structural analysis of Ti–Ta shape-memory alloys. Shap Mem Superelasticity. 2019;5:6–15. doi:10.1007/s40830-018-00201-6
  • Kadletz PM, Motemani Y, Iannotta J, et al. Crystallographic structure analysis of a Ti-Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 2018;20:137–150. doi:10.1021/acscombsci.7b00135
  • Liu S, Shin YC. Additive manufacturing of Ti6Al4 V alloy: a review. Mater Des 2019;164:107552. doi:10.1016/j.matdes.2018.107552
  • Hao Y-L, Li S-J, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35:661–671. doi:10.1007/s12598-016-0793-5
  • Murray JL. The Ta−Ti (tantalum-titanium) system. Bull Alloy Phase Diagrams. 1981;2:62–66. doi:10.1007/BF02873705
  • Ikeda M, Komatsu S-y, Nakamura Y. The effect of Ta content on phase constitution and aging behavior of Ti-Ta binary alloys. Mater Trans 2002;43:2984–2990. doi:10.2320/matertrans.43.2984
  • Bywater KA, Christian JW. Martensitic transformations in titanium-tantalum alloys. Philos Mag 1972;25:1249–1273. doi:10.1080/14786437208223852
  • Fu Z, Körner C. Actual state-of-the-art of electron beam powder bed fusion. Eur J Mater. 2022;2:54–116. doi:10.1080/26889277.2022.2040342
  • Körner C. Additive manufacturing of metallic components by selective electron beam melting — a review. Int Mater Rev. 2016;61:361–377. doi:10.1080/09506608.2016.1176289
  • Collins PC, Brice DA, Samimi P, et al. Microstructural control of additively manufactured metallic materials. Annu Rev Mater Res 2016;46:63–91. doi:10.1146/annurev-matsci-070115-031816
  • Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: analysis of microstructure formation. Mater Sci Eng, A. 1999;271:232–241. doi:10.1016/S0921-5093(99)00202-6
  • Kumar Mohanty U, Sarangi H. Solidification of Metals and Alloys. In: Abdallah Z, Aldoumani N, editors. Casting processes and modelling of metallic materials. London: IntechOpen; 2021.
  • Kurz W, Fisher DJ. Fundamentals of solidification. Zurich: Trans Tech Publications, Limited; 1998.
  • Brodie EG, Medvedev AE, Frith JE, et al. Remelt processing and microstructure of selective laser melted Ti25Ta. J Alloys Compd. 2020;820:153082. doi:10.1016/j.jallcom.2019.153082
  • Brodie EG, Richter J, Wegener T, et al. Influence of a remelt scan strategy on the microstructure and fatigue behaviour of additively manufactured biomedical Ti65Ta efficiently assessed using small scale specimens. Int J Fatigue. 2022;162:106944. doi:10.1016/j.ijfatigue.2022.106944
  • Brodie EG, Richter J, Wegener T, et al. Low-cycle fatigue performance of remelted laser powder bed fusion (L-PBF) biomedical Ti25Ta. Mater Sci Eng, A. 2020;798:140228. doi:10.1016/j.msea.2020.140228
  • Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016;660:461–470. doi:10.1016/j.jallcom.2015.11.141
  • Huang S, Sing SL, de Looze G, et al. Laser powder bed fusion of titanium-tantalum alloys: compositions and designs for biomedical applications. J Mech Behav Biomed Mater. 2020;108:103775. doi:10.1016/j.jmbbm.2020.103775
  • Brodie EG, Wegener T, Richter J, et al. A mechanical comparison of alpha and beta phase biomedical TiTa lattice structures. Mater Des 2021;212:110220. doi:10.1016/j.matdes.2021.110220
  • Xing L-L, Zhao C-C, Chen H, et al. Microstructure of a Ti–50 wt% Ta alloy produced via laser powder bed fusion. Acta Metall Sin 2020;33:981–990. doi:10.1007/s40195-020-01052-w
  • Tedman-Jones SN, McDonald SD, Bermingham MJ, et al. A new approach to nuclei identification and grain refinement in titanium alloys. J Alloys Compd. 2019;794:268–284. doi:10.1016/j.jallcom.2019.04.224
  • Fischer M, Joguet D, Robin G, et al. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng, C. 2016;62:852–859. doi:10.1016/j.msec.2016.02.033
  • Huang S, Narayan RL, Tan JHK, et al. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion. Acta Mater. 2021;204:116522. doi:10.1016/j.actamat.2020.116522
  • Morita A, Fukui H, Tadano H, et al. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. Mater Sci Eng, A. 2000;280:208–213. doi:10.1016/S0921-5093(99)00668-1
  • Polmear I, St John D, Nie J-F, et al. Light alloys: metallurgy of the light metals. 5th ed. [Place of publication not identified]: Elsevier Science and Technology Books, Inc; 2017.
  • Lu HZ, Ma HW, Cai WS, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021;219:117261. doi:10.1016/j.actamat.2021.117261
  • Lu HZ, Ma HW, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. J Mater Res Technol. 2021;15:6797–6812. doi:10.1016/j.jmrt.2021.11.112
  • Luo X, Liu LH, Yang C, et al. Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. J Mater Sci Technol. 2021;68:112–123. doi:10.1016/j.jmst.2020.06.053
  • Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep. 2019;9:41. doi:10.1038/s41598-018-36641-4
  • Ballor J, Li T, Prima F, et al. A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties. Int Mater Rev. 2023;68:26–45. doi:10.1080/09506608.2022.2036401
  • Hickman BS. The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci. 1969;4:554–563. doi:10.1007/BF00550217