375
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sc/Zr microalloying on strength-corrosion performance synergy of wire-arc directed energy deposited Al-Mg

, , , , , , , , , , & show all
Article: e2358981 | Received 24 Feb 2024, Accepted 16 May 2024, Published online: 04 Jun 2024

References

  • Cong BQ, Cai XY, Qi ZW, et al. The effects of ultrasonic frequency pulsed arc on wire + arc additively manufactured high strength aluminum alloys. Addit Manuf. 2022;51:102617. doi:10.1016/j.addma.2022.102617
  • Cao QH, Zeng CY, Qi BJ, et al. Excellent isotropic mechanical properties of directed energy deposited Mg-Gd-Y-Zr alloys via establishing homogeneous equiaxed grains embedded with dispersed nano-precipitation. Addit Manuf. 2023;67:103498. doi:10.1016/j.addma.2023.103498
  • Yi H, Jia L, Ding JL, et al. Achieving material diversity in wire arc additive manufacturing: leaping from alloys to composites via wire innovation. Int J Mach Tools Manuf. 2024;194:104103. doi:10.1016/j.ijmachtools.2023.104103
  • Wu BT, Shao ZX, Shao DD, et al. Enhanced corrosion performance in Ti-6Al-4 V alloy produced via wire-arc directed energy deposition with magnetic arc oscillation. Addit Manuf. 2023;66:103465. doi:10.1016/j.addma.2023.103465
  • Wang LW, Wu T, Wang DL, et al. A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al-Zn-Mg-Cu alloy: process, microstructure and mechanical properties. Addit Manuf. 2023;72:103639. doi:10.1016/j.addma.2023.103639
  • Lee S, Utsunomiya A, Akamatsu H, et al. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys. Acta Mater. 2002;50(3):553–564. doi:10.1016/S1359-6454(01)00368-8
  • Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol. 2018;259:68–74. doi:10.1016/j.jmatprotec.2018.04.014
  • Tonelli L, Laghi V, Palermo M, et al. Aa5083 (Al-Mg) plates produced by wire-and-arc additive manufacturing: effect of specimen orientation on microstructure and tensile properties. Prog Addit Manuf. 2021;6(3):479–494. doi:10.1007/s40964-021-00189-z
  • Cordova L, Bor T, Smit MD, et al. Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF). Addit Manuf. 2020;36:101625. doi:10.1016/j.addma.2020.101625
  • Wang ZH, Lin X, Kang N, et al. Directed energy deposition additive manufacturing of a Sc/Zr-modified Al-Mg alloy: effect of thermal history on microstructural evolution and mechanical properties. Mater Sci Eng A. 2021;802:140606. doi:10.1016/j.msea.2020.140606
  • Liu DH, Wu DJ, Wang RZ, et al. Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: microstructure evaluation and mechanical properties. Addit Manuf. 2022;50:102554. doi:10.1016/j.addma.2021.102554
  • Wang Y, Guo W, Xie YK, et al. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J Mater Sci Technol. 2023;177:44–58. doi:10.1016/j.jmst.2023.07.068
  • Yi H, Wang Q, Zhang WJ, et al. Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: improving properties via controlling grain structures. J Mater Process Technol. 2023;321:118134. doi:10.1016/j.jmatprotec.2023.118134
  • Baek M-S, Shah AW, Kim YK, et al. Microstructures, tensile properties, and strengthening mechanisms of novel Al-Mg alloys with high Mg content. J Alloys Compd. 2023;950:169866. doi:10.1016/j.jallcom.2023.169866
  • Dong BL, Cai XY, Lin SB, et al. Microstructures and mechanical properties of wire arc additive manufactured 5183-Al: influences of deposition dimensions. CIRP J Manuf Sci Technol. 2021;35:744–752. doi:10.1016/j.cirpj.2021.08.014
  • Li D, Wu YY, Geng ZW, et al. High strength Al−Mg−Sc−Zr alloy with heterogeneous grain structure and intragranular precipitation produced by laser powder bed fusion. J Alloys Compd. 2023;939:168722. doi:10.1016/j.jallcom.2023.168722
  • Dai W, Guo W, Xiao J, et al. Tailoring properties of directed energy deposited Al-Mg alloy by balancing laser shock peening and heat treatment. J Mater Sci Technol. 2024;203:78–96. doi:10.1016/j.jmst.2024.03.051
  • Ren LL, Gu HM, Wang W, et al. Effect of Sc content on the microstructure and properties of Al-Mg-Sc alloys deposited by wire arc additive manufacturing. Met Mater Int. 2021;27(1):68–77. doi:10.1007/s12540-020-00763-0
  • Ren LL, Gu HM, Wang W, et al. The microstructure and properties of an Al-Mg-0.3Sc alloy deposited by wire arc additive manufacturing. Metals (Basel). 2020;10(3):320. doi:10.3390/met10030320
  • Wang ZH, Lin X, Kang N, et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure. Addit Manuf. 2020;34:101260. doi:10.1016/j.addma.2020.101260
  • Wang ZH, Lin X, Wang JF, et al. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit Manuf. 2022;59:103093. doi:10.1016/j.addma.2022.103093
  • Ma KK, Wen HM, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–155. doi:10.1016/j.actamat.2013.09.042
  • Zhou L, Hyer H, Park S, et al. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion. Addit Manuf. 2019;28:485–496. doi:10.1016/j.addma.2019.05.027
  • Gaumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps. Acta Mater. 2001;49(6):1051–1062. doi:10.1016/S1359-6454(00)00367-0
  • Kendig KL, Miracle DB. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 2002;50(16):4165–4175. doi:10.1016/S1359-6454(02)00258-6
  • Yang KV, Shi YJ, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr Mater. 2018;145:113–117. doi:10.1016/j.scriptamat.2017.10.021
  • Qin ZH, Kang N, Mansori ME, et al. Anisotropic high cycle fatigue property of Sc and Zr-modified Al-Mg alloy fabricated by laser powder bed fusion. Addit Manuf. 2022;49:102514. doi:10.1016/j.addma.2021.102514
  • Dong BL, Xia YH, Cai XY, et al. Addition of Sc in wire-based directed energy deposition of Al-Mg-Zn-Cu alloy: microalloying to refine grains and improve mechanical properties. Addit Manuf. 2023;67:103494. doi:10.1016/j.addma.2023.103494
  • Guo YL, Han QF, Lu WJ, et al. Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys. Virtual Phys Prototyp. 2022;17(3):649–661. doi:10.1080/17452759.2022.2048236
  • Ren LL, Gu HM, Wang W, et al. Microstructure and properties of Al-6.0Mg-0.3Sc alloy deposited by double-wire Arc additive manufacturing. 3D Print Addit Manuf. 2022;9(4):301–310. doi:10.1089/3dp.2020.0039
  • Xia YH, Cai XY, Dong BL, et al. Wire arc additive manufacturing of Al-Mg-Sc alloy: An analysis of the effect of Sc on microstructure and mechanical properties. Mater Charact. 2023;203:113116. doi:10.1016/j.matchar.2023.113116
  • Dong BL, Cai XY, Lin SB, et al. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties. Addit Manuf. 2020;36:101447. doi:10.1016/j.addma.2020.101447
  • Dong BL, Cai XY, Xia YH, et al. Effects of interlayer temperature on the microstructures of wire arc additive manufactured Al-Zn-Mg-Cu alloy: insights into texture responses and dynamic precipitation behaviors. Addit Manuf. 2021;48:102453. doi:10.1016/j.addma.2021.102453
  • Zhang H, Gu DD, Dai DH, et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting. Appl Surf Sci. 2020;509:145330. doi:10.1016/j.apsusc.2020.145330
  • Qiu YC, Yang XF, Li JX, et al. The influence of Sc and Zr additions on microstructure and corrosion behavior of AA5182 alloy sheet. Corros Sci. 2022;199:110181. doi:10.1016/j.corsci.2022.110181
  • Zhang ZQ, Sun JE, Xia JY, et al. Anisotropic response in corrosion behavior of laser powder bed fusion Al-Mn-Mg-Sc-Zr alloy. Corros Sci. 2022;208:110634. doi:10.1016/j.corsci.2022.110634
  • Deng Y, Yin ZM, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65:288–298. doi:10.1016/j.corsci.2012.08.024
  • Zhou ZX, Chen JQ, Wen F, et al. Optimization of heat treatment for an Al-Mg-Sc-Mn-Zr alloy with ultrafine grains manufactured by laser powder bed fusion. Mater Charact. 2022;189:111977. doi:10.1016/j.matchar.2022.111977
  • Zeng CY, Cai XY, Qi ZW, et al. Effect of in-situ synthesized TiC particles on microstructure and mechanical properties of directed energy deposited AA2219 Al-Cu alloy. J Alloys Compd. 2023;964:171331. doi:10.1016/j.jallcom.2023.171331
  • Yi H, Yang L, Jia L, et al. Porosity in wire-arc directed energy deposition of aluminum alloys: formation mechanisms, influencing factors and inhibition strategies. Addit Manuf. 2024;84:104108. doi:10.1016/j.addma.2024.104108
  • Qi ZW, Qi BJ, Cong BQ, et al. Microstructure and mechanical properties of wire plus arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated. J Manuf Process. 2019;40:27–36.
  • Zhao ZJ, Dong CF, Kong DC, et al. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel. Mater Charact. 2021;182:111514. doi:10.1016/j.matchar.2021.111514
  • Ren Y, Dong P, Zeng Y, et al. Effect of heat treatment on properties of Al-Mg-Sc-Zr alloy printed by selective laser melting. Appl Surf Sci. 2022;574:151471. doi:10.1016/j.apsusc.2021.151471
  • Li RD, Wang MB, Li ZM, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • Wang ZN, Lin X, Wang LL, et al. Microstructure evolution and mechanical properties of the wire + arc additive manufacturing Al-Cu alloy. Addit Manuf. 2021;47:102298. doi:10.1016/j.addma.2021.102298
  • Wang ZH, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40–56. doi:10.1016/j.jmst.2021.03.069
  • Hyde KB, Norman AF, Prangnell PB. The effect of cooling rate on the morphology of primary Al3Se intermetallic particles in Al-Sc alloys. Acta Mater. 2001;49(8):1327–1337. doi:10.1016/S1359-6454(01)00050-7
  • Kong DC, Dong CF, Wei SL, et al. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit Manuf. 2021;38:101804. doi:10.1016/j.addma.2020.101804
  • Zha M, Tian T, Jia HL, et al. Sc/Zr ratio-dependent mechanisms of strength evolution and microstructural thermal stability of multi-scale hetero-structured Al–Mg–Sc–Zr alloys. J Mater Sci Technol. 2023;140:67–78. doi:10.1016/j.jmst.2022.09.009
  • Jiang JY, Jiang F, Zhang MH, et al. Al3(Sc, Zr) precipitation in deformed Al-Mg-Mn-Sc-Zr alloy: effect of annealing temperature and dislocation density. J Alloys Compd. 2020;831:154856. doi:10.1016/j.jallcom.2020.154856
  • Zhang ZQ, Sun JE, Wu JS, et al. Influence of heat treatment on corrosion behavior of Al-Mn-Mg-Sc-Zr alloy produced by laser powder bed fusion. J Mater Res Technol. 2023;23:4734–4746. doi:10.1016/j.jmrt.2023.02.029
  • Geng HB, Li JL, Xiong JT, et al. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26(2):621–629. doi:10.1007/s11665-016-2480-y
  • Yuan T, Ren XL, Chen SJ, et al. Al-Zn-Mg-Cu alloy with both high strength and high plasticity fabricated with wire arc additive manufacturing. Sci Technol Weld Joining. 2022;28(1):81–88. doi:10.1080/13621718.2022.2117532
  • Saad G, Fayek SA, Fawzy A, et al. Serrated flow and work hardening characteristics of Al-5356 alloy. J Alloys Compd. 2010;502(1):139–146. doi:10.1016/j.jallcom.2010.04.119
  • Hu ZH, Qi Y, Nie XJ, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting. Mater Charact. 2021;178:111198. doi:10.1016/j.matchar.2021.111198
  • Bakare F, Schieren L, Rouxel B, et al. The impact of L1(2) dispersoids and strain rate on the Portevin-Le-Chatelier effect and mechanical properties of Al-Mg alloys. Mater Sci Eng Struct Mater Prop Microstruct Process. 2021;811:141040. doi:10.1016/j.msea.2021.141040
  • Van Hooreweder B, Moens D, Boonen R, et al. Analysis of fracture toughness and crack propagation of Ti6Al4 V produced by selective laser melting. Adv Eng Mater. 2012;14(1-2):92–97. doi:10.1002/adem.201100233
  • Fu R, Lu WJ, Guo YL, et al. Achieving high strength-ductility of Al-Zn-Mg-Cu alloys via hot-wire arc additive manufacturing enabled by strengthening precipitates. Addit Manuf. 2022;58:103042. doi:10.1016/j.addma.2022.103042
  • Kong DC, Wang L, Zhu GL, et al. Heat treatment effects on the metastable microstructure, mechanical property and corrosion behavior of Al-added CoCrFeMnNi alloys fabricated by laser powder bed fusion. J Mater Sci Technol. 2023;138:171–182. doi:10.1016/j.jmst.2022.08.018
  • Li N, Dong CF, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy. Corros Sci. 2021;180:109174. doi:10.1016/j.corsci.2020.109174
  • Ao M, Liu HM, Dong CF, et al. Degradation mechanism of 6063 aluminium matrix composite reinforced with TiC and Al2O3 particles. J Alloys Compd. 2021;859:157838. doi:10.1016/j.jallcom.2020.157838
  • Ji YC, Dong CF, Kong DC, et al. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting. J Mater Sci Technol. 2020;46:145–155. doi:10.1016/j.jmst.2020.01.037
  • Davenport AJ, Yuan Y, Ambat R, et al. Intergranular corrosion and stress corrosion cracking of sensitised AA5182. Aluminium Alloys Pts 1 and 2. 2006;519-521:641–646.
  • Da Silva CLM, Scotti A. The influence of double pulse on porosity formation in aluminum GMAW. J Mater Process Technol. 2006;171(3):366–372. doi:10.1016/j.jmatprotec.2005.07.008
  • Boeira AP, Ferreira IL, Garcia A, et al. Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast Al-Cu alloys. Mater Des. 2009;30(6):2090–2098. doi:10.1016/j.matdes.2008.08.032
  • Hou XR, Zhao L, Ren SB, et al. A comparative study on Al-Mg-Sc-Zr alloy fabricated by wire arc additive manufacturing with controlling interlayer temperature and continuous printing: porosity, microstructure, and mechanical properties. J Mater Sci Technol. 2024;193:199–216. doi:10.1016/j.jmst.2023.12.062
  • Cong BQ, Ouyang RJ, Qi BJ, et al. Influence of cold metal transfer process and Its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Met Mater Eng. 2016;45(3):606–611. doi:10.1016/S1875-5372(16)30080-7
  • Guo XP, Li HJ, Xue P, et al. Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing. J Mater Sci Technol. 2023;149:56–66. doi:10.1016/j.jmst.2022.12.007
  • Shen JJ, Chen B, Wan J, et al. Effect of annealing on microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy. Mater Sci Eng Struct Mater Prop Microstruct Process. 2022;838:142821. doi:10.1016/j.msea.2022.142821
  • Ralston KD, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium. Electrochim Acta. 2011;56(4):1729–1736. doi:10.1016/j.electacta.2010.09.023
  • Gu DD, Zhang H, Dai DH, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting. Corros Sci. 2020;170:108657. doi:10.1016/j.corsci.2020.108657
  • Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater. 2010;63(12):1201–1204. doi:10.1016/j.scriptamat.2010.08.035
  • Zhang RF, Qiu Y, Qi YS, et al. A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al-Mg alloy. Corros Sci. 2018;133:1–5. doi:10.1016/j.corsci.2018.01.009
  • Ahmad Z, Ul-Hamid A, Bj AA, et al. The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution. Corros Sci. 2001;43(7):1227–1243. doi:10.1016/S0010-938X(00)00147-5