253
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Superaerophobic polymer objects prototyped via liquid crystal display (LCD)-based 3D printing: one-step post-surface-treatment and application in underwater bubble manipulation

, , , , , , , & show all
Article: e2359005 | Received 24 Feb 2024, Accepted 18 May 2024, Published online: 05 Jun 2024

References

  • Zhou ZA, Xu Z, Finch JA, et al. On the role of cavitation in particle collection in flotation – a critical review. II. Miner Eng. 2009;22(5):419–433. doi:10.1016/j.mineng.2008.12.010
  • Weinstein T, Gilon H, Filc O, et al. Automated manipulation of miniature objects underwater using air capillary bridges: pick-and-place, surface cleaning, and underwater origami. ACS Appl Mater Interfaces. 2022;14(7):9855–9863. doi:10.1021/acsami.1c23845
  • Ma L, Wei Z, Zhao C, et al. Hierarchical superhydrophilic/superaerophobic 3D porous trimetallic (Fe, Co, Ni) spinel/carbon/nickel foam for boosting oxygen evolution reaction. Appl Catal B Environ. 2023;332:122717, doi:10.1016/j.apcatb.2023.122717
  • Zhang S, Xu L, Wu J, et al. Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions. Nano Res. 2022;15(2):1672–1679. doi:10.1007/s12274-021-3811-3
  • Zhou Y, Dai L, Jiao N. Review of bubble applications in microrobotics: propulsion, manipulation, and assembly. Micromachines (Basel). 2022;13(7):1068, doi:10.3390/mi13071068
  • Kobo D, Pinchasik B-E. Backswimmer-inspired miniature 3D-printed robot with buoyancy autoregulation through controlled nucleation and release of microbubbles. Adv Intell Syst. 2022;4(6):2200010, doi:10.1002/aisy.202200010
  • Tenjimbayashi M, Doi K, Naito M. Microbubble flows in superwettable fluidic channels. RSC Adv. 2019;9(37):21220–21224. doi:10.1039/c9ra04212a
  • Ben S, Ning Y, Zhao Z, et al. Underwater directional and continuous manipulation of gas bubbles on superaerophobic magnetically responsive microcilia array. Adv Funct Mater. 2022;32(28):2113374, doi:10.1002/adfm.202113374
  • Lin F, Wo K, Fan X, et al. Directional transport of underwater bubbles on solid substrates: principles and applications. ACS Appl Mater Interfaces. 2023;15(8):10325–10340. doi:10.1021/acsami.2c21466
  • Tao DP. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: a review. Miner Eng. 2022;183:107554, doi:10.1016/j.mineng.2022.107554
  • Gunatilake UB, Alvarez-Braña Y, Ojeda E, et al. Underwater magneto-driven air de-bubbler. J Mater Chem A. 2022;10(24):12832–12841. doi:10.1039/d2ta01009g
  • Zhang X, Dong Y, He Z, et al. Efficient gas transportation using bioinspired superhydrophobic yarn as the gas-siphon underwater. ACS Appl Mater Interfaces. 2020;12(15):18174–18181. doi:10.1021/acsami.0c03366
  • Huang C, Guo Z. The wettability of gas bubbles: from macro behavior to nano structures to applications. Nanoscale. 2018;10(42):19659–19672. doi:10.1039/c8nr07315e
  • George JE, Chidangil S, George SD. Recent progress in fabricating superaerophobic and superaerophilic surfaces. Adv Mater Interfaces. 2017;4(9):1601088, doi:10.1002/admi.201601088
  • Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nat Rev Mater. 2017;2(7):17036, doi:10.1038/natrevmats.2017.36
  • Lin H-H, Lin C-H, Luo S-C. Engineering superaerophobic electrodes using hydrophilic PEDOT and colloidal lithography for enhanced bubble release and efficient hydrogen evolution reaction. ACS Appl Mater Interfaces. 2023;15(24):29214–29223. doi:10.1021/acsami.3c05049
  • Yin K, Wang L, Deng Q, et al. Efficient water boiling evaporation via a laser-architected superhydrophilic, underwater superaerophobic, and high infrared emissivity interface. Chem Eng J. 2023;466:143336, doi:10.1016/j.cej.2023.143336
  • Wang X, Bai H, Yang J, et al. Designing flexible but tough slippery track for underwater gas manipulation. Small. 2021;17(8):2007803, doi:10.1002/smll.202007803
  • Ning Y, Zhang D, Ben S, et al. An innovative design by single-layer superaerophobic mesh: continuous underwater bubble antibuoyancy collection and transportation. Adv Funct Mater. 2020;30(7):1907027, doi:10.1002/adfm.201907027
  • Huo J, Bai X, Yong J, et al. How to adjust bubble’s adhesion on solid in aqueous media: femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation. Chem Eng J. 2021;414:128694, doi:10.1016/j.cej.2021.128694
  • Yong JL, Zhuang J, Bai X, et al. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. Nanoscale. 2021;13(23):10414–10424. doi:10.1039/d1nr01225h
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290. doi:10.1021/acs.chemrev.7b00074
  • Quan H, Zhang T, Xu H, et al. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110–115. doi:10.1016/j.bioactmat.2019.12.003
  • Jiang P, Ji Z, Wang X, et al. Surface functionalization – a new functional dimension added to 3D printing. J Mater Chem C. 2020;8(36):12380–12411. doi:10.1039/d0tc02850a
  • Dong Z, Levkin PA. 3D microprinting of super-repellent microstructures: recent developments, challenges, and opportunities. Adv Funct Mater. 2023;33(39):2213916, doi:10.1002/adfm.202213916
  • Dong Z, Vuckovac M, Cui W, et al. 3D printing of superhydrophobic objects with bulk nanostructure. Adv Mater. 2021;33(45):2106068, doi:10.1002/adma.202106068
  • Yin Q, Guo Q, Wang Z, et al. 3D-printed bioinspired cassie–baxter wettability for controllable microdroplet manipulation. ACS Appl Mater Interfaces. 2020;13(1):1979–1987. doi:10.1021/acsami.0c18952
  • Zhang Y, Yin M-J, Ouyang X, et al. 3D μ-printing of polytetrafluoroethylene microstructures: a route to superhydrophobic surfaces and devices. Appl Mater Today. 2020;19:100580, doi:10.1016/j.apmt.2020.100580
  • Liu H, Zhang Z, Wu C, et al. Biomimetic superhydrophobic materials through 3D printing: progress and challenges. Micromachines (Basel). 2023;14(6):1216, doi:10.3390/mi14061216
  • Yan C, Jiang P, Jia X, et al. 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale. 2020;12(5):2924–2938. doi:10.1039/c9nr09620e
  • Gaxiola-López JC, Lara-Ceniceros TE, Silva-Vidaurri LG, et al. 3D printed parahydrophobic surfaces as multireaction platforms. Langmuir. 2022;38(25):7740–7749. doi:10.1021/acs.langmuir.2c00788
  • Song Y, Yang F, Zheng Z, et al. Synthesis of hyperbranched polymer for 3D printing. Chin J Chem. 2021;39(11):3064–3070. doi:10.1002/cjoc.202100521
  • Mendes-Felipe C, Oliveira J, Etxebarria I, et al. State-of-the-art and future challenges of UV curable polymer-based smart materials for printing technologies. Adv Mater Technol. 2019;4(3):1800618, doi:10.1002/admt.201800618
  • Tamburrino F, Barone S, Paoli A, et al. Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual Phys Prototyp. 2021;16(2):221–254. doi:10.1080/17452759.2021.1917039
  • Caplins BW, Higgins CI, Kolibaba TJ, et al. Characterizing light engine uniformity and its influence on liquid crystal display based vat photopolymerization printing. Addit Manuf. 2023;62:103381, doi:10.1016/j.addma.2022.103381
  • Shan Y, Krishnakumar A, Qin Z, et al. Reducing lateral stair-stepping defects in liquid crystal display-based vat photopolymerization by defocusing the image pattern. Addit Manuf. 2022;52:102653, doi:10.1016/j.addma.2022.102653
  • Lin D-Z, Yu P-H, Zhang Z-J, et al. Design and fabrication of large area vat photopolymerization 3D printing system using a 32-inch quasi-collimated visible backlight module with local dimming control. Addit Manuf. 2023;73:103665, doi:10.1016/j.addma.2023.103665
  • Zhang X, Xu Y, Li L, et al. Acrylate-based photosensitive resin for stereolithographic three-dimensional printing. J Appl Polym Sci. 2019;136(21):47487, doi:10.1002/app.47487
  • Barkane A, Platnieks O, Jurinovs M, et al. Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polym Degrad Stab. 2020;181:109347, doi:10.1016/j.polymdegradstab.2020.109347
  • Khatri Z, Jatoi AW, Ahmed F, et al. Cell adhesion behavior of poly(ϵ-caprolactone)/poly(L-lactic acid) nanofibers scaffold. Mater Lett. 2016;171:178–181. doi:10.1016/j.matlet.2016.02.061
  • Simon J, Langenscheidt A. Curing behavior of a UV-curable inkjet ink: distinction between surface-cure and deep-cure performance. J Appl Polym Sci. 2020;137(40):e49218, doi:10.1002/app.49218
  • Wang XL, An WL, Tian F, et al. High-efficiency hydrolysis of thermosetting polyester resins into porous functional materials using Low-boiling aqueous solvents. ACS Sustain Chem Eng. 2020;8(42):16010–16019. doi:10.1021/acssuschemeng.0c06240
  • Moraila CL, Montes Ruiz-Cabello FJ, Cabrerizo-Vilchez M, et al. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy. J Colloid Interface Sci. 2019;539:448–456. doi:10.1016/j.jcis.2018.12.084
  • Zhang P, Wang S, Wang S, et al. Superwetting surfaces under different media: effects of surface topography on wettability. Small. 2015;11(16):1939–1946. doi:10.1002/smll.201401869
  • Shen J, Li B, Zheng Y, et al. Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. Chem Eng J. 2022;433:133517, doi:10.1016/j.cej.2021.133517
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994. https://doi.org/10.1021/ie50320a024.
  • He H, Ji L, Wei Y, et al. Superaerophobic copper-based nanowires array for efficient nitrogen reduction. J Colloid Interface Sci. 2022;608:1489–1496. doi:10.1016/j.jcis.2021.10.062
  • Yong J, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl Mater Interfaces. 2017;9(45):39863–39871. doi:10.1021/acsami.7b14819
  • Zhang P, Zhao C, Zhao T, et al. Recent advances in bioinspired gel surfaces with superwettability and special adhesion. Adv Sci. 2019;6(18):1900996, doi:10.1002/advs.201900996
  • Grenman H, Salmi T, Murzin DY. Solid-liquid reaction kinetics - experimental aspects and model development. Rev Chem Eng. 2011;27(1-2):53–77. doi:10.1515/Revce.2011.500
  • Sun YP, Liu MC, Li XL, et al. Adjustable underwater gas transportation using bioinspired superhydrophobic elastic string. Coatings. 2022;12(5):638, doi:10.3390/coatings12050638
  • Bruckdorfer R. The basics about nitric oxide. Mol Asp Med. 2005;26(1-2):3–31. doi:10.1016/j.mam.2004.09.002
  • Squire S, Kightley R, Petros AJ. An effective method of scavenging nitric oxide. Br J Anaesth. 1996;77(3):432–434. doi:10.1093/bja/77.3.432
  • Wang X, Liu J, Zhang Y, et al. Advances in precision microfabrication through digital light processing: system development, material and applications. Virtual Phys Prototyp. 2023;18(1):e2248101, doi:10.1080/17452759.2023.2248101
  • Zhang J, Xiao P. 3D printing of photopolymers. Polym Chem. 2018;9(13):1530–1540. doi:10.1039/c8py00157j