393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of structural build-up in one-component stiff and two-component shotcrete-accelerated set-on-demand mixtures for 3D concrete printing

, &
Article: e2359625 | Received 06 Feb 2024, Accepted 19 May 2024, Published online: 04 Jun 2024

References

  • Khoshnevis B. Automated construction by contour crafting-related robotics and information technologies. Autom Constr. 2004;13:5–19. doi:10.1016/j.autcon.2003.08.012
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12:261–276. doi:10.1080/17452759.2017.1326724
  • Yang W, Wang L, Ma G, et al. An integrated method of topological optimization and path design for 3D concrete printing. Eng Struct. 2023;291:116435, doi:10.1016/j.engstruct.2023.116435
  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019;123; doi:10.1016/j.cemconres.2019.105780
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11:209–225. doi:10.1080/17452759.2016.1209867
  • Weng Y, Li M, Ruan S, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Cleaner Prod. 2020;261:121245, doi:10.1016/j.jclepro.2020.121245
  • Singh A, Wang Y, Zhou Y, et al. Utilization of antimony tailings in fiber-reinforced 3D printed concrete: a sustainable approach for construction materials. Constr Build Mater. 2023;408:133689, doi:10.1016/j.conbuildmat.2023.133689
  • Zhu B, Wang Y, Sun J, et al. An experimental study on the influence of waste rubber particles on the compressive, flexural and impact properties of 3D printable sustainable cementitious composites. Case Stud Constr Mater 2023;19:e02607.
  • Sun J, Tang W, Wang Y, et al. Electromagnetic and mechanical performance of 3D printed wave-shaped copper solid superstructures. J Mater Res Technol. 2023;27:6936–6946. doi:10.1016/j.jmrt.2023.11.116
  • Yao X, Lyu X, Sun J, et al. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr Build Mater. 2023;375:130898, doi:10.1016/j.conbuildmat.2023.130898
  • Sun J, Aslani F, Wei J, et al. Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr Build Mater. 2021;300:124026, doi:10.1016/j.conbuildmat.2021.124026
  • Sun J, Huang Y, Aslani F, et al. Electromagnetic wave absorbing performance of 3D printed wave-shape copper solid cementitious element. Cem Concr Compos. 2020;114:103789, doi:10.1016/j.cemconcomp.2020.103789
  • Ma G, Sun J, Aslani F, et al. Review on electromagnetic wave absorbing capacity improvement of cementitious material. Constr Build Mater. 2020;262:120907, doi:10.1016/j.conbuildmat.2020.120907
  • Tay YWD, Lim SG, Phua SLB, et al. Exploring carbon sequestration potential through 3D concrete printing. Virtual Phys Prototyp. 2023;18:e2277347, doi:10.1080/17452759.2023.2277347
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022;17:662–681. doi:10.1080/17452759.2022.2048521
  • Buswell RA, da Silva WRL, Bos FP, et al. A process classification framework for defining and describing digital fabrication with concrete. Cem Concr Res. 2020;134; doi:10.1016/j.cemconres.2020.106068
  • Bos FP, Kruger P, Lucas SS, et al. Juxtaposing fresh material characterisation methods for buildability assessment of 3D printable cementitious mortars. Cem Concr Compos. 2021;120:104024, doi:10.1016/j.cemconcomp.2021.104024
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037, doi:10.1016/j.cemconres.2020.106037
  • Lao W, Li M, Wong TN, et al. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual Phys Prototyp. 2020;15:178–193. doi:10.1080/17452759.2020.1713580
  • Ashrafi N, Duarte JP, Nazarian S, et al. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete. Virtual Phys Prototyp. 2019;14:135–140. doi:10.1080/17452759.2018.1532800
  • Wangler T, Pileggi R, Gürel S, et al. A chemical process engineering look at digital concrete processes: critical step design,: inline mixing, and scaleup. Cem Concr Res. 2022;155:106782, doi:10.1016/j.cemconres.2022.106782
  • Rehman AU, Kim J-H. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials (Basel). 2021;14:3800, doi:10.3390/ma14143800
  • Rehman AU, Birru BM, Kim J-H. Set-on-demand 3D concrete printing (3DCP) construction and potential outcome of shotcrete accelerators on its hardened properties. Case Stud Constr Mater. 2023;18:e01955, doi:10.1016/j.cscm.2023.e01955
  • Kruger J, Cho S, Zeranka S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse. Composites Part B: Eng. 2020;183:107660, doi:10.1016/j.compositesb.2019.107660
  • Bester F, Kruger J, van Zijl G. Rivet reinforcement for concrete printing. Addit Manuf. 2023;67:103490, doi:10.1016/j.addma.2023.103490
  • Kruger J, Zeranka S, van Zijl G. 3D concrete printing: a lower bound analytical model for buildability performance quantification. Autom Constr. 2019;106; doi:10.1016/j.autcon.2019.102904
  • Inayath Basha S, Ur Rehman A, Khalid HR, et al. 3D printable geopolymer composites reinforced with carbon-based nanomaterials–a review. Chem Rec. 2023;23:e202300054, doi:10.1002/tcr.202300054
  • Inayath Basha S, Ur Rehman A, Aziz MA, et al. Cement composites with carbon-based nanomaterials for 3D concrete printing applications–a review. Chem Rec. 2023;23:e202200293, doi:10.1002/tcr.202200293
  • Tao Y, Rahul AV, Lesage K, et al. Stiffening control of cement-based materials using accelerators in inline mixing processes: possibilities and challenges. Cem Concr Compos. 2021;119:103972, doi:10.1016/j.cemconcomp.2021.103972
  • Reiter L, Wangler T, Anton A, et al. Setting on demand for digital concrete – principles, measurements, chemistry, validation. Cem Concr Res. 2020;132:106047, doi:10.1016/j.cemconres.2020.106047
  • Flatt RJ, Wangler T. On sustainability and digital fabrication with concrete. Cem Concr Res. 2022;158:106837, doi:10.1016/j.cemconres.2022.106837
  • Mohan MK, Rahul AV, De Schutter G, et al. Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete. Constr Build Mater. 2021;275:122136, doi:10.1016/j.conbuildmat.2020.122136
  • Bizu Melesse Birru AUR, Seungwoo K, Kim J-H. Realization of high speed 3D concrete printing with vertical construction speed of 5 m/hr, Korean concrete institute. Spring Convention. 2023;35:643–644.
  • Muthukrishnan S, Ramakrishnan S, Sanjayan J. Set on demand geopolymer using print head mixing for 3D concrete printing. Cem Concr Compos. 2022;128:104451, doi:10.1016/j.cemconcomp.2022.104451
  • Muthukrishnan S, Ramakrishnan S, Sanjayan J. Rapid early age strength development of in-line activated geopolymer for concrete 3D printing. Constr Build Mater. 2023;406:133312, doi:10.1016/j.conbuildmat.2023.133312
  • Jiao D, Shi C, De Schutter G. Magneto-rheology control in 3D concrete printing: a rheological attempt. Mater Lett. 2022;309:131374, doi:10.1016/j.matlet.2021.131374
  • Yue H, Zhang Z, Hua S, et al. Solid waste-based set-on-demand 3D printed concrete: active rheological control of cement-based magneto-rheological fluids. Constr Build Mater. 2023;404:133269, doi:10.1016/j.conbuildmat.2023.133269
  • Muthukrishnan S, Ramakrishnan S, Sanjayan J. Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing. Constr Build Mater. 2020;265:120786, doi:10.1016/j.conbuildmat.2020.120786
  • Kanagasuntharam S, Ramakrishnan S, Sanjayan J. Investigating PCM encapsulated NaOH additive for set-on-demand in 3D concrete printing. Cem Concr Compos. 2024;145:105313, doi:10.1016/j.cemconcomp.2023.105313
  • Perrot A, Rangeard D, Pierre AJM. Structures, Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49:1213–1220. doi:10.1617/s11527-015-0571-0
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018;112:76–85. doi:10.1016/j.cemconres.2018.04.005
  • De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete - technical, economic and environmental potentials. Cem Concr Res. 2018;112:25–36. doi:10.1016/j.cemconres.2018.06.001
  • Mehta PK, Monteiro PJ. Concrete: microstructure, properties, and materials. New York: McGraw-Hill Education; 2014.
  • Reiter L, Wangler T, Roussel N, et al. The role of early age structural build-up in digital fabrication with concrete. Cem Concr Res. 2018;112:86–95. doi:10.1016/j.cemconres.2018.05.011
  • Liu Z, Li M, Quah TKN, et al. Comprehensive investigations on the relationship between the 3D concrete printing failure criterion and properties of fresh-state cementitious materials. Addit Manuf. 2023;76:103787, doi:10.1016/j.addma.2023.103787
  • Timothy W, Ena L, Lex R, et al. Digital concrete: opportunities and challenges. RILEM tech lett. 2016;1.
  • Wolfs R, Bos F, Salet T. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem Concr Compos. 2019;104:103344, doi:10.1016/j.cemconcomp.2019.103344
  • Perrot A, Pierre A, Nerella VN, et al. From analytical methods to numerical simulations: a process engineering toolbox for 3D concrete printing. Cem Concr Compos. 2021;122:104164, doi:10.1016/j.cemconcomp.2021.104164
  • Li M, Zhang D, Wong TN, et al. Modeling and experimental investigation of fiber orientation in cast and 3D-printed cementitious composites. Mater Sci Addit Manuf. 2023;2:1603, doi:10.36922/msam.1603
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14:104–113. doi:10.1080/17452759.2018.1500420
  • Nerella VN, Krause M, Mechtcherine V. Direct printing test for buildability of 3D-printable concrete considering economic viability. Autom Constr. 2020;109; doi:10.1016/j.autcon.2019.102986
  • Le TT, Austin SA, Lim S, et al. Structures, Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45:1221–1232. doi:10.1617/s11527-012-9828-z
  • Nicolas R, Richard B, Nicolas D, et al. Assessing the fresh properties of printable cement-based materials: high potential tests for quality control. Cem Concr Res. 2022;158:106836, doi:10.1016/j.cemconres.2022.106836
  • Nguyen-Van V, Li S, Liu J, et al. Modelling of 3D concrete printing process: a perspective on material and structural simulations. Addit Manuf. 2022;61:103333.
  • Wolfs R, Suiker A. Structural failure during extrusion-based 3D printing processes. Int J Adv Manuf Technol. 2019;104:565–584. doi:10.1007/s00170-019-03844-6
  • Ooms T, Vantyghem G, Van Coile R, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Addit Manuf. 2021;38:101743, doi:10.1016/j.addma.2020.101743
  • Lim S, Buswell RA, Valentine PJ, et al. Modelling curved-layered printing paths for fabricating large-scale construction components. Addit Manuf. 2016;12:216–230. doi:10.1016/j.addma.2016.06.004
  • Chang Z, Liang M, Xu Y, et al. 3D concrete printing: lattice modeling of structural failure considering damage and deformed geometry. Cem Concr Compos. 2022;133:104719, doi:10.1016/j.cemconcomp.2022.104719
  • Wu Y, Liu C, Liu H, et al. Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates. J Build Eng. 2021;42:103030, doi:10.1016/j.jobe.2021.103030
  • Ivanova I, Ivaniuk E, Bisetti S, et al. Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cem Concr Res. 2022;156:106764, doi:10.1016/j.cemconres.2022.106764
  • Chen Y, Rodriguez CR, Li Z, et al. Effect of different grade levels of calcined clays on fresh and hardened properties of ternary-blended cementitious materials for 3D printing. Cem Concr Compos. 2020;103708.
  • Tay YWD, Qian Y, Tan MJ. Printability region for 3D concrete printing using slump and slump flow test. Compos Part B: Eng. 2019;174.
  • Perrot A. 3D printing of concrete: state of the Art and challenges of the digital construction revolution. London: John Wiley & Sons; 2019.
  • Wolfs RJM, Bos FP, Salet TAM. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing. Cem Concr Res. 2018;106:103–116. doi:10.1016/j.cemconres.2018.02.001
  • Boscaro F, Quadranti E, Wangler T, et al. Eco-friendly, set-on-demand digital concrete. 3D Print Addit Manuf. 2022;9:3–11.
  • Das A, Reiter L, Mantellato S, et al. Early-age rheology and hydration control of ternary binders for 3D printing applications. Cem Concr Res. 2022;162:107004, doi:10.1016/j.cemconres.2022.107004
  • Chen Y, Rahmani H, Schlangen E, et al. An approach to develop set-on-demand 3D printable limestone-calcined clay-based cementitious materials using calcium nitrate. Cem Concr Compos. 2023;105373.
  • Esnault V, Labyad A, Chantin M, et al. Experience in Online Modification of Rheology and Strength Acquisition of 3D Printable Mortars. Cham: Springer International Publishing; 2019, pp. 24-38.
  • Rehman AU, Perrot A, Kim JH. A critical evaluation of Ten quality control test methods for 3D concrete printing with Mono-component concrete. Dev Built Environ. 2023;16.
  • Rehman AU, Jhun JH, Nam J, et al. Use of slug test as an In-line technique for the quality control of 3D concrete printing, Korean society of civil engineers journal. Proc Annu Fall Symp. 2021;33:649–650.
  • Melesse BB. Characterization of Fresh Properties of 3D Printable Concrete Mixtures and Buildability Assessment. Seoul, Korea: YONSEI University; 2022.
  • A. C403/C403M-16. Standard test method for time of setting of concrete mixtures by penetration resistance, ASTM International: West Conshohocken, PA, USA, (2016).
  • [73] D. ASTM. 2166; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, West Conshoshocken, PA, United States, (2016).
  • Kim I, Lee J, Kim J. Design of a compression test machine for measuring fresh properties of 3D printable concrete, Korean Soc, Civ. Eng. Fall Conf. Proc, 2020.
  • Koehler EP, Fowler DW, Ferraris CF, et al. A new: portable rheometer for fresh self-consolidating concrete. ACI Spec Publ. 2005;233:97.
  • Omran AF, Naji S, Khayat KH. Portable vane test to assess structural buildup at rest of self-consolidating concrete. ACI Mater J. 2011;108.
  • Nishijo K, Ohno M, Ishida T. Quantitative evaluation of buildability in 3D concrete printing based on shear vane test, EASE(C16): Proceedings of The 16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019, Springer, 2021, pp. 1891-1901.
  • ASTM C597. Standard Test Method for Pulse Velocity Through Concrete. PA, USA: ASTM West Conshohocken; 2016.
  • Lootens D, Jousset P, Martinie L, et al. Yield stress during setting of cement pastes from penetration tests. Cem Concr Res. 2009;39:401–408. doi:10.1016/j.cemconres.2009.01.012
  • Zhu B, Pan J, Nematollahi B, et al. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater Des. 2019;181:108088, doi:10.1016/j.matdes.2019.108088
  • Munemo R, Kruger J, van Zijl GP. Improving interlayer bond in 3D printed concrete through induced thermo-hydrokinetics. Constr Build Mater. 2023;393:132121, doi:10.1016/j.conbuildmat.2023.132121
  • Malan JDM, van Rooyen AS, van Zijl GP. Chloride induced corrosion and carbonation in 3D printed concrete. Infrastructures. 2021;7:1, doi:10.3390/infrastructures7010001
  • Kim J. Development of Concrete 3D Printing Extruder and Extrusion Performance Evaluation for Various Printing Speed, MS Thesis, Graduate School, Yonsei University (2017).
  • Wolfs RJM, Bos FP, Salet TAM. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete. Constr Build Mater. 2018;181:447–454. doi:10.1016/j.conbuildmat.2018.06.060
  • Chen Y, He S, Gan Y, et al. A review of printing strategies,: sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. J Build Eng. 2022;45:103599, doi:10.1016/j.jobe.2021.103599
  • Casagrande L, Esposito L, Menna C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete. Constr Build Mater. 2020;245:118286, doi:10.1016/j.conbuildmat.2020.118286
  • Prevedello Rubin A, Hasse JA, Longuini Repette W. The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture. Constr Build Mater. 2021;276:122221, doi:10.1016/j.conbuildmat.2020.122221
  • Ivanova I, Mechtcherine V. Possibilities and challenges of constant shear rate test for evaluation of structural build-up rate of cementitious materials. Cem Concr Res. 2020;130; doi:10.1016/j.cemconres.2020.105974
  • Rubin AP, Hasse JA, Repette WL. The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture. Constr Build Mater. 2021;276:122221, doi:10.1016/j.conbuildmat.2020.122221
  • Rehman AU, Lee S-M, Kim J-H. Use of municipal solid waste incineration ash in 3D printable concrete. Process Saf Environ Prot. 2020;142:219–228. doi:10.1016/j.psep.2020.06.018
  • Roussel N. A thixotropy model for fresh fluid concretes: theory: validation and applications. Cem Concr Res. 2006;36:1797–1806. doi:10.1016/j.cemconres.2006.05.025
  • Lu Z, Peng X, Dorn T, et al. Early performances of cement paste in the presence of triethanolamine: rheology, setting and microstructural development. J Appl Polym Sci. 2021;138:50753, doi:10.1002/app.50753
  • Rehman AU, Kim I-G, Kim J-H. Towards full automation in 3D concrete printing construction: development of an automated and inline sensor-printer integrated instrument for in-situ assessment of structural build-up and quality of concrete. Dev Built Environ. 2024;17:100344, doi:10.1016/j.dibe.2024.100344
  • Suiker AS, Wolfs RJ, Lucas SM, et al. Elastic buckling and plastic collapse during 3D concrete printing. Cem Concr Res. 2020;135:106016, doi:10.1016/j.cemconres.2020.106016
  • Tripathi A, Nair SAO, Neithalath N. A comprehensive analysis of buildability of 3D-printed concrete and the use of bi-linear stress-strain criterion-based failure curves towards their prediction. Cem Concr Compos. 2022;128:104424, doi:10.1016/j.cemconcomp.2022.104424