391
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Non-contact microwave sensor for FDM 3D printing quality control

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2360167 | Received 31 Mar 2024, Accepted 19 May 2024, Published online: 04 Jun 2024

References

  • Paul GM, Rezaienia A, Wen P, et al. Medical applications for 3D printing: recent developments. Mo Med. 2018;115(1):75–81.
  • Teweldebrhan BT, Maghelal P, Galadari A. Impact of 3D printing on car shipping supply chain logistics in the Middle East. Asian J Shipp Logist. Sep. 2022;38(3):181–196. doi:10.1016/j.ajsl.2022.06.003
  • Rodríguez-Hernández AG, Chiodoni A, Bocchini S, et al. 3D printer waste, a new source of nanoplastic pollutants. Environ Pollut. Dec. 2020;267:115609. doi:10.1016/j.envpol.2020.115609
  • Colella R, Chietera FP, Michel A, et al. Electromagnetic characterisation of conductive 3D-printable filaments for designing fully 3D-printed antennas. IET Microw Antennas Propag. Sep. 2022;16(11):687–698. doi:10.1049/mia2.12278
  • Marquez-Segura E, Shin S-H, Dawood A, et al. Microwave characterization of conductive PLA and its application to a 12 to 18 GHz 3-D printed rotary vane attenuator. IEEE Access. 2021;9:84327–84343. doi:10.1109/ACCESS.2021.3087012
  • Sriseubsai W, Tippayakraisorn A, Lim JW. Robust design of PC/ABS filled with nano carbon black for electromagnetic shielding effectiveness and surface resistivity. Processes. May 2020;8(5):616. doi:10.3390/pr8050616
  • Huber E, Mirzaee M, Bjorgaard J, et al. Dielectric property measurement of PLA. 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND. IEEE; May 2016. p. 788–792. doi:10.1109/EIT.2016.7535340
  • Kjelgard KG, Wisland DT, Lande TS. 3D printed wideband microwave absorbers using composite graphite/PLA filament. 2018 48th European Microwave Conference (EuMC), Madrid. IEEE; Sep. 2018. p. 859–862. doi:10.23919/EuMC.2018.8541699
  • Petroff M, Appel J, Rostem K, et al. A 3D-printed broadband millimeter wave absorber. Rev Sci Instrum. Feb. 2019;90(2):024701. doi:10.1063/1.5050781
  • Rifuggiato S, Minetola P, Stiuso V, et al. An investigation of the influence of 3D printing defects on the tensile performance of ABS material. Mater Today Proc. 2022;57:851–858. doi:10.1016/j.matpr.2022.02.486
  • Khosravani MR, Božić Ž, Zolfagharian A, et al. Failure analysis of 3D-printed PLA components: impact of manufacturing defects and thermal ageing. Eng Fail Anal. Jun. 2022;136:106214. doi:10.1016/j.engfailanal.2022.106214
  • Kousiatza C, Tzetzis D, Karalekas D. In-situ characterization of 3D printed continuous fiber reinforced composites: a methodological study using fiber Bragg grating sensors. Compos Sci Technol. Apr. 2019;174:134–141. doi:10.1016/j.compscitech.2019.02.008
  • Sen C, Dursun G, Orhangul A, et al. Assessment of additive manufacturing surfaces using X-ray computed tomography. Procedia CIRP. 2022;108:501–506. doi:10.1016/j.procir.2022.03.078
  • Szymanik B, Psuj G, Hashemi M, et al. Detection and identification of defects in 3D-printed dielectric structures via thermographic inspection and deep neural networks. Materials. Jul. 2021;14(15):4168. doi:10.3390/ma14154168
  • AbouelNour Y, Gupta N. Comparison of in-situ nondestructive testing and ex-situ methods in additive manufactured specimens for internal feature detection. Res Nondestr Eval. Jan. 2024;35(1):20–31. doi:10.1080/09349847.2023.2280650
  • Wu H, Yu Z, Wang Y. Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model. Int J Adv Manuf Technol. May 2017;90(5–8):2027–2036. doi:10.1007/s00170-016-9548-6
  • Sabik A, Rucka M, Andrzejewska A, et al. Tensile failure study of 3D printed PLA using DIC technique and FEM analysis. Mech Mater. Dec. 2022;175:104506. doi:10.1016/j.mechmat.2022.104506
  • Khosravani MR, Soltani P, Reinicke T. Fracture and structural performance of adhesively bonded 3D-printed PETG single lap joints under different printing parameters. Theor Appl Fract Mech. Dec. 2021;116:103087. doi:10.1016/j.tafmec.2021.103087
  • Dang Z, Cao J, Pagani A, et al. Fracture toughness determination and mechanism for mode-I interlaminar failure of 3D-printed carbon-Kevlar composites. Compos Commun. Apr. 2023;39:101532. doi:10.1016/j.coco.2023.101532
  • Abbot DW, Kallon DVV, Anghel C, et al. Finite element analysis of 3D printed model via compression tests. Procedia Manuf. 2019;35:164–173. doi:10.1016/j.promfg.2019.06.001
  • Aldosari F, Khan MAA, Asad M, et al. Finite element analysis of polylactic acid (PLA) under tensile and compressive loading. J Phys Conf Ser. Apr. 2023;2468(1):012094. doi:10.1088/1742-6596/2468/1/012094
  • Fieber L, Bukhari SS, Wu Y, et al. In-line measurement of the dielectric permittivity of materials during additive manufacturing and 3D data reconstruction. Addit Manuf. Mar. 2020;32:101010. doi:10.1016/j.addma.2019.101010
  • Isakov D, Stevens CJ, Castles F, et al. A split ring resonator dielectric probe for near-field dielectric imaging. Sci Rep. May 2017;7(1):2038. doi:10.1038/s41598-017-02176-3
  • Sobkiewicz P, Bieńkowski P, Błażejewski W. Microwave non-destructive testing for delamination detection in layered composite pipelines. Sensors. Jun. 2021;21(12):4168. doi:10.3390/s21124168
  • Ślot M, Drabik P, Bartosik M, et al. Non-contact microwave sensor for 3D printing quality control. Dec. 2023. Preprint available at SSRN: https://ssrn.com/abstract = 4655382.
  • Abu-Khousa M, Saleh W, Qaddoumi N. Defect imaging and characterization in composite structures using near-field microwave nondestructive testing techniques. Compos Struct. Jan. 2003;62(3–4):255–259. doi:10.1016/j.compstruct.2003.09.023
  • Pozar DM. Microwave engineering. 4th ed. New York: Wiley; 2012.
  • Gonzalez-Teruel JD, Jones SB, Gimenez-Gallego J, et al. Evaluating a low-cost self-manufactured coaxial open-ended probe for the measurement of the complex permittivity of granular media. 2021 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Kiel. IEEE; Jul. 2021. p. 1–6. doi:10.1109/ISEMA49699.2021.9508322
  • Nuan-On A, Angkawisittpan N, Piladaeng N, et al. Design and fabrication of modified SMA-connector sensor for detecting water adulteration in honey and natural latex. Appl Syst Innov. Dec. 2021;5(1):4. doi:10.3390/asi5010004
  • Picha T, Papezova S, Picha S. Evaluation of relative permittivity and loss factor of 3D printing materials for use in RF electronic applications. Processes. Sep. 2022;10(9):1881. doi:10.3390/pr10091881
  • Cieślik M, Rodak A, Susik A, et al. Multiple reprocessing of conductive PLA 3D-printing filament: rheology, morphology, thermal and electrochemical properties assessment. Materials. Feb. 2023;16(3):1307. doi:10.3390/ma16031307
  • Jain SK, Tadesse Y. Fabrication of polylactide/carbon nanopowder filament using melt extrusion and filament characterization for 3D printing. Int J Nanosci. Oct. 2019;18(5):1850026. doi:10.1142/S0219581X18500266
  • Rocha DP, Squissato AL, da Silva SM, et al. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta. Mar. 2020;335:135688. doi:10.1016/j.electacta.2020.135688
  • Beran T, Mulholland T, Henning F, et al. Nozzle clogging factors during fused filament fabrication of spherical particle filled polymers. Addit Manuf. Oct. 2018;23:206–214. doi:10.1016/j.addma.2018.08.009
  • Tlegenov Y, Hong GS, Lu WF. Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf. Dec. 2018;54:45–55. doi:10.1016/j.rcim.2018.05.010
  • Croom BP, Abbott A, Kemp JW, et al. Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Addit Manuf. Jan. 2021;37:101701. doi:10.1016/j.addma.2020.101701
  • In Het Panhuis M, Thielemans W, Minett AI, et al. A composite from soy oil and carbon nanotubes. Int J Nanosci. Jun. 2003;02(3):185–194. doi:10.1142/S0219581X0300119X
  • Kapetanakis I, Fountos G, Michail C, et al. 3D printing X-ray quality control phantoms. A low contrast paradigm. J Phys Conf Ser. Nov. 2017;931:012026. doi:10.1088/1742-6596/931/1/012026
  • Zhou J, Li H, Lu L, et al. Machine vision-based surface defect detection study for ceramic 3D printing. Machines. Feb. 2024;12(3):166. doi:10.3390/machines12030166
  • Kuzmanić I, Vujović I, Petković M, et al. Influence of 3D printing properties on relative dielectric constant in PLA and ABS materials. Prog Addit Manuf. Aug. 2023;8(4):703–710. doi:10.1007/s40964-023-00411-0
  • Dichtl C, Sippel P, Krohns S. Dielectric properties of 3D printed polylactic acid. Adv Mater Sci Eng. 2017;2017:1–10. doi:10.1155/2017/6913835