449
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intra-layer and inter-layer monitoring of laser powder bed fusion defects based on airborne acoustic and gn-Res model: pore and deformation

, , , , , , , , , & show all
Article: e2360699 | Received 16 Mar 2024, Accepted 21 May 2024, Published online: 07 Jun 2024

References

  • Kruth J-P, Badrossamay M, Yasa E, et al. Part and material properties in selective laser melting of metals. Paper presented at: Proceedings of the 16th International Symposium on Electromachining (ISEM XVI); 2010.
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–1928. doi:10.1007/s11665-014-0958-z
  • Jiaoxi Y, Wenliang W, Changliang W, et al. Development status and typical application of selective laser melting technology applications in aerospace field. 航空材料学报. 2021;41(2):1–15.
  • Ataee A, Li Y, Brandt M, et al. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater. 2018;158:354–368. doi:10.1016/j.actamat.2018.08.005
  • Vasco JC. Additive manufacturing for the automotive industry. In: Pou J, Riveiro A, Paulo Davim J, editors. Additive manufacturing. Elsevier; 2021. p. 505–530.
  • Trapp J, Rubenchik AM, Guss G, et al. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today. 2017;9:341–349. doi:10.1016/j.apmt.2017.08.006
  • Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017;124:360–371. doi:10.1016/j.actamat.2016.11.018
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915–2925. doi:10.1016/j.jmatprotec.2014.06.005
  • Du Y, Arnold CB. Powder melting efficiency during laser powder bed fusion of stainless steel and titanium alloy. J Manuf Process. 2024;120:161–169. doi:10.1016/j.jmapro.2024.04.046
  • Chua C, Liu Y, Williams RJ, et al. In-process and post-process strategies for part quality assessment in metal powder bed fusion: a review. J Manuf Syst. 2024;73:75–105. doi:10.1016/j.jmsy.2024.01.004
  • Forien J-B, Calta NP, DePond PJ, et al. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: a correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf. 2020;35:101336. doi:10.1016/j.addma.2020.101336
  • Guo C, Xu Z, Zhou Y, et al. Single-track investigation of IN738LC superalloy fabricated by laser powder bed fusion: track morphology, bead characteristics and part quality. J Mater Process Technol. 2021;290:117000. doi:10.1016/j.jmatprotec.2020.117000
  • Du C, Zhao Y, Jiang J, et al. Pore defects in laser powder bed fusion: formation mechanism, control method, and perspectives. J Alloys Compd. 2023;944:169215. doi:10.1016/j.jallcom.2023.169215
  • Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–307. doi:10.1016/j.ijfatigue.2012.11.011
  • Hojjatzadeh SMH, Parab ND, Guo Q, et al. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int J Mach Tools Manuf. 2020;153:103555. doi:10.1016/j.ijmachtools.2020.103555
  • Fatemi A, Molaei R, Sharifimehr S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4 V including surface finish effect. Int J Fatigue. 2017;100:347–366. doi:10.1016/j.ijfatigue.2017.03.044
  • Jost EW, Miers JC, Robbins A, et al. Effects of spatial energy distribution-induced porosity on mechanical properties of laser powder bed fusion 316L stainless steel. Addit Manuf. 2021;39:101875. doi:10.1016/j.addma.2021.101875
  • Krakhmalev P, Fredriksson G, Yadroitsava I, et al. Deformation behavior and microstructure of Ti6Al4 V manufactured by SLM. Phys Procedia. 2016;83:778–788. doi:10.1016/j.phpro.2016.08.080
  • Everton SK, Hirsch M, Stravroulakis P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431–445. doi:10.1016/j.matdes.2016.01.099
  • Clijsters S, Craeghs T, Buls S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol. 2014;75(5-8):1089–1101. doi:10.1007/s00170-014-6214-8
  • Kanko JA, Sibley AP, Fraser JM. In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J Mater Process Technol. 2016;231:488–500. doi:10.1016/j.jmatprotec.2015.12.024
  • Grasso M, Colosimo BM. Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol. 2017;28(4):044005. doi:10.1088/1361-6501/aa5c4f
  • Zur Jacobsmühlen J, Kleszczynski S, Schneider D, et al. High resolution imaging for inspection of laser beam melting systems. Paper presented at: 2013 IEEE international instrumentation and measurement technology conference (I2MTC); 2013.
  • Chen L, Yao X, Tan C, et al. In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning. Addit Manuf. 2023;69:103547. doi:10.1016/j.addma.2023.103547
  • Zhang L, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18(4):463–475. doi:10.1002/adem.201500419
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater. 2010;58(9):3303–3312. doi:10.1016/j.actamat.2010.02.004
  • Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254–265. doi:10.1108/13552540610707013
  • Jia H, Sun H, Wang H, et al. Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol. 2021;113(9-10):2413–2435. doi:10.1007/s00170-021-06810-3
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360. doi:10.1080/09506608.2015.1116649
  • Bartlett JL, Li X. An overview of residual stresses in metal powder bed fusion. Addit Manuf. 2019;27:131–149. doi:10.1016/j.addma.2019.02.020
  • Wang Q, Jia J, Zhao Y, et al. In situ measurement of full-field deformation for arc-based directed energy deposition via digital image correlation technology. Addit Manuf. 2023;72:103635. doi:10.1016/j.addma.2023.103635
  • Shevchik SA, Kenel C, Leinenbach C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit Manuf. 2018;21:598–604. doi:10.1016/j.addma.2017.11.012
  • Pandiyan V, Wróbel R, Richter RA, et al. Monitoring of laser powder bed fusion process by bridging dissimilar process maps using deep learning-based domain adaptation on acoustic emissions. Addit Manuf. 2024;80:103974. doi:10.1016/j.addma.2024.103974
  • Pandiyan V, Drissi-Daoudi R, Shevchik S, et al. Analysis of time, frequency and time-frequency domain features from acoustic emissions during laser powder-bed fusion process. Procedia CIRP. 2020;94:392–397. doi:10.1016/j.procir.2020.09.152
  • Ye D, Zhang Y, Zhu K, et al. Characterization of acoustic signals during a direct metal laser sintering process; 2017. p. 1315–1320.
  • Ye D, Hong GS, Zhang Y, et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int J Adv Manuf Technol. 2018;96(5-8):2791–2801. doi:10.1007/s00170-018-1728-0
  • Pandiyan V, Wróbel R, Leinenbach C, et al. Optimizing in-situ monitoring for laser powder bed fusion process: deciphering acoustic emission and sensor sensitivity with explainable machine learning. J Mater Process Technol. 2023;321:118144. doi:10.1016/j.jmatprotec.2023.118144
  • Pandiyan V, Wróbel R, Richter RA, et al. Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed fusion process for in-situ monitoring. Mater Des. 2023;235:112458. doi:10.1016/j.matdes.2023.112458
  • Shevchik SA, Masinelli G, Kenel C, et al. Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Trans Ind Inf. 2019;15(9):5194–5203. doi:10.1109/TII.2019.2910524
  • Babu SS, Mourad A-HI, Harib KH, et al. Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys Prototyp. 2022;18(1):e2141653. doi:10.1080/17452759.2022.2141653
  • Zhang J, Yin C, Xu Y, et al. Machine learning applications for quality improvement in laser powder bed fusion: a state-of-the-art review. Int J AI Mater Design. 2024;1(1):2301. doi:10.36922/ijamd.2301
  • Goh GD, Huang X, Huang S, et al. Data imputation strategies for process optimization of laser powder bed fusion of Ti6Al4 V using machine learning. Mater Sci Addit Manuf. 2023;2(1):50. doi:10.36922/msam.50
  • Nguyen NV, Hum AJW, Do T, et al. Semi-supervised machine learning of optical in-situ monitoring data for anomaly detection in laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2129396. doi:10.1080/17452759.2022.2129396
  • Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998–6008.
  • Rao Y, Zhao W, Tang Y, et al. Hornet: efficient high-order spatial interactions with recursive gated convolutions. Adv Neural Inf Process Syst. 2022;35:10353–10366.
  • Mohammadi MG, Mahmoud D, Elbestawi M. On the application of machine learning for defect detection in L-PBF additive manufacturing. Opt Laser Technol. 2021;143:107338. doi:10.1016/j.optlastec.2021.107338
  • Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process. 2013;62(3):531–544. doi:10.1109/TSP.2013.2288675
  • Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science. 2020;370(6520):1080–1086. doi:10.1126/science.abd1587
  • Wang Q, Wu B, Zhu P, et al. ECA-net: efficient channel attention for deep convolutional neural networks. Paper presented at: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2020.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Paper presented at: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
  • Hu J, Shen L, Albanie S, et al. Gather-excite: exploiting feature context in convolutional neural networks. Adv Neural Inf Process Syst. 2018;31:9423–9433.
  • Woo S, Park J, Lee J-Y, et al. Cbam: convolutional block attention module. Paper presented at: Proceedings of the European conference on computer vision (ECCV); 2018.
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–1105.
  • Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16  ×  16 words: transformers for image recognition at scale. Preprint, arXiv:2010.11929; 2020.
  • Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. Paper presented at the International conference on machine learning; 2019.
  • Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Preprint, arXiv:1406.1078; 2014.
  • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Guo L, Li N, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing. 2017;240:98–109. doi:10.1016/j.neucom.2017.02.045
  • Williams RJ, Sing SL. Spatiotemporal analysis of powder bed fusion melt pool monitoring videos using deep learning. J Intell Manuf. 2024:1–14. doi:10.1007/s10845-024-02355-w