374
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MXene and polyaniline coated 3D-printed carbon electrode for asymmetric supercapacitor

, &
Article: e2361139 | Received 20 Feb 2024, Accepted 23 May 2024, Published online: 01 Jul 2024

References

  • Zhou Y, Qi H, Yang J, et al. Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ Sci. 2021;14:1854–1896. doi:10.1039/D0EE03167D
  • Lakshmi KCS, Vedhanarayanan B. High-performance supercapacitors: a comprehensive review on paradigm shift of conventional energy storage devices. Batteries. 2023;9(4):202. doi:10.3390/batteries9040202
  • Zhang C, Ma Y, Zhang X, et al. Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater. 2020;3(1):29–55. doi:10.1002/eem2.12058
  • Wang H, Wang Y, Chang J, et al. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 2023;23(12):5663–5672. doi:10.1021/acs.nanolett.3c01307
  • Yun Q, Li L, Hu Z, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv Mater. 2020;32:1903826.
  • Zhang Y, Li L, Su H, et al. Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A. 2015;3:43–59. doi:10.1039/C4TA04996A
  • Xia W, Mahmood A, Zou R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci. 2015;8:1837–1866. doi:10.1039/C5EE00762C
  • Han R, Liu F, Wang X, et al. Functionalised hexagonal boron nitride for energy conversion and storage. J Mater Chem A. 2020;8:14384–14399. doi:10.1039/D0TA05008C
  • Jia Z, Cheng C, Chen X, et al. Applications of all-inorganic perovskites for energy storage. Mater Adv. 2023;4:79–104. doi:10.1039/D2MA00779G
  • Dong W, Xie M, Zhao S, et al. Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Mater Sci Eng R Rep. 2023;152:100713. doi:10.1016/j.mser.2022.100713
  • Mouchani P, Sarraf-Mamoory R, Aghajani H, et al. Low mass loading of graphene quantum dots on titanium nitride nanotube arrays for boosting capacity and operating voltage of symmetric supercapacitor in an aqueous electrolyte. J Energy Storage. 2023;73:108858. doi:10.1016/j.est.2023.108858
  • Khudiyev T, Lee JT, Cox JR, et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 2020;32:2004971. doi:10.1002/adma.202004971
  • Bozkurt Y, Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. Mater Res Technol. 2021;14:1430–1450. doi:10.1016/j.jmrt.2021.07.050
  • Nichols MR. How does the automotive industry benefit from 3D metal printing? Met Powder Rep. 2019;74(5):257–258. doi:10.1016/j.mprp.2019.07.002
  • Sachyani Keneth E, Kamyshny A, Totaro M, et al. 3D printing materials for soft robotics. Adv Mater. 2021;33:2003387. doi:10.1002/adma.202003387
  • Rezende IHWS, Semaan FS, Borges LEP, et al. Energy devices and defense: metal oxides and supercapacitors. In: Á Rocha, CH Fajardo-Toro, JMR Rodríguez, editor. Developments and advances in defense and security. Singapore: Springer Singapore; 2022. p. 241–248.
  • Lakkala P, Munnangi SR, Bandari S, et al. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: a review. Int J Pharm. 2023;5:100159.
  • Joseph TM, Kallingal A, Suresh AM, et al. 3D printing of polylactic acid: recent advances and opportunities. Int J Adv Manuf Technol. 2023;125:1015–1035. doi:10.1007/s00170-022-10795-y
  • Bodaghi M, Sadooghi A, Bakhshi M, et al. Glass fiber reinforced acrylonitrile butadiene styrene composite gears by FDM 3D printing. Adv Mater Interfaces. 2023;10:2300337. doi:10.1002/admi.202300337
  • Wojtyła S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg. 2017;14(6):D80–D85. doi:10.1080/15459624.2017.1285489
  • Gnanasekaran K, Heijmans T, van Bennekom S, et al. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today. 2017;9:21–28. doi:10.1016/j.apmt.2017.04.003
  • Guo H, Lv R, Bai S. Recent advances on 3D printing graphene-based composites. Nano Mater Sci. 2019;1(2):101–115. doi:10.1016/j.nanoms.2019.03.003
  • Mello G, Pinto E, Ponzio EA, et al. Graphite: sailing in a cost-effective electron sea. In: Campbell QC, editor. Graphite properties occurrencesand uses. New York: Nova Science Publishers, Inc; 2013. p. 189–214.
  • Tan HW, Choong YY, Kuo CN, et al. 3D printed electronics: processes, materials and future trends. Progr Mater Sci. 2022;127:100945. doi:10.1016/j.pmatsci.2022.100945
  • Mappoli S, Ghosh K, Pumera M. Integrated free-standing WS2 3D-printed carbon supercapacitor with solid state electrolyte. Virtual Phys Prototyp. 2024;19(1):1–10.
  • Ghosh K, Pumera M. Free-standing electrochemically coated MoS x based 3D-printed nanocarbon electrode for solid-state supercapacitor application †. Nanoscale. 2021;13(11):5744–5756. doi:10.1039/D0NR06479C
  • Barbosa J, Amorim P, Gonçalves M, et al. Evaluation of 3D printing parameters on the electrochemical performance of conductive polymeric components for chemical war … evaluation of 3d printing parameters on the electrochemical performance of conductive polymeric components for chemical warfare agent sensing developments and advances in defense and security; 2019; p. 425−435.
  • Ghosh K, Ng S, Iffelsberger C, et al. Inherent impurities in graphene/polylactic acid filament strongly influence on the capacitive performance of 3D-printed electrode. Chem Eur J. 2020;26(67):15746–15753. doi:10.1002/chem.202004250
  • Redondo E, Muñoz J, Pumera M. Green activation using reducing agents of carbon-based 3D printed electrodes: turning good electrodes to great. Carbon N Y. 2021;175:413–419. doi:10.1016/j.carbon.2021.01.107
  • Richter EM, Rocha DP, Cardoso RM, et al. Complete additively manufactured (3D-printed). Electrochem Sensing Platform Anal Chem. 2019;91(20):12844–12851.
  • Ghosh K, Pumera M. Mxene and MoS3−x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5(8):2100451. doi:10.1002/smtd.202100451.
  • Mohammadi AV, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372(6547):eabf1581. doi:10.1126/science.abf1581
  • Xu X, Zhang Y, Sun H, et al. Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv Electron Mater. 2021;7:2000967. doi:10.1002/aelm.202000967
  • Ahouei MA, Syed TH, Bishop V, et al. Ti3C2Tx MXene framework materials: preparation, properties and applications in energy and environment. Catal Today. 2023;409:162–172.
  • Heme HN, Alif MSN, Rahat SMSM, et al. Recent progress in polyaniline composites for high-capacity energy storage: a review. J. Energy Storage. 2021;42:103018. doi:10.1016/j.est.2021.103018
  • Ghosh K, Yue CY, Sk MM, et al. Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl Mater Interfaces. 2017;9(18):15350–15363. doi:10.1021/acsami.6b16406
  • Ghosh K, Yue CY, Sk MM, et al. Development of a 3D graphene aerogel and 3D porous graphene/MnO2 @polyaniline hybrid film for all-solid-state flexible asymmetric supercapacitors. Sustain Energy Fuels. 2018;2(1):280–293. doi:10.1039/C7SE00433H
  • Bhadra S, Singha NK, Khastgir D. Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci. 2007;104(3):1900–1904. doi:10.1002/app.25867
  • Li N, Xiao Y, Xu C, et al. Facile preparation of polyaniline nanoparticles via electrodeposition for supercapacitors. Int J Electrochem Sci. 2013;8(1):1181–1188. doi:10.1016/S1452-3981(23)14090-9
  • Zhang H, Cao G, Wang W, et al. Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim Acta. 2009;54(4):1153–1159. doi:10.1016/j.electacta.2008.09.004
  • Chodankar NR, Dubal DP, Kwon Y, et al. Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Mater. 2017;9(8):1–10. doi:10.1038/am.2017.145
  • Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233–9280. doi:10.1021/acs.chemrev.8b00252
  • Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843–10857. doi:10.1039/C9TA01850F
  • Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633–7644. doi:10.1021/acs.chemmater.7b02847
  • Wang Q, Mei Y, Zhou R, et al. Persulfate activation of CuS@Ti3C2-based MXene with Bi-active centers toward orange II removal under visible light. Colloids Surf A: Physicochem Eng Asp. 2022;648:129315. doi:10.1016/j.colsurfa.2022.129315
  • Xu S, Liu C, Jiang X, et al. Ti3C2 MXene promoted Fe3+/H2O2 fenton oxidation: comparison of mechanisms under dark and visible light conditions. J Hazard Mater. 2023;444:130450. doi:10.1016/j.jhazmat.2022.130450
  • Wei H, Dong J, Fang X, et al. Ti3C2Tx MXene/Polyaniline (PANI). Ti3C2Tx MXene/Polyaniline (PANI). Sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol. 2019;169:52–59.
  • Al Mayyahi A, Sarker S, Everhart M, et al. Synthesis of ultrathin, nano-sized Ti3C2Tx with abundant = O and –OH terminals and high transparency as a cocatalyst: enabling design of high-performance titania-Ti3C2Tx hybrid photocatalysts. J Phys Chem Solids. 2022;170:110875), doi:10.1016/j.jpcs.2022.110875
  • Peng Y, Zhang Y, Deng L, et al. Electrostatic self-assembly of Ti3C2Tx/Fe nanochain hybrids for efficient microwave absorber. J Magn Magn Mater. 2023;570:170536.
  • Cao LCT, Jong CA, Hsu SH, et al. A simple approach to MXene micropatterning from molecularly driven assembly. ACS Omega. 2021;6(51):35866–35875. doi:10.1021/acsomega.1c06662
  • Pan Z, Cao F, Hu X, et al. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J Mater Chem A Mater. 2019;7(15):8984–8992. doi:10.1039/C9TA00085B
  • Zhi W, Xiang S, Bian R, et al. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos Sci Technol. 2018;168:404–411. doi:10.1016/j.compscitech.2018.10.026
  • Lu W, Mustafa B, Wang Z, et al. PDMS-encapsulated MXene@Polyester fabric strain sensor for multifunctional sensing applications. J Nanomater. 2022;12(5):871. doi:10.3390/nano12050871
  • Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater. 2014;24(17):2489–2499. doi:10.1002/adfm.201303282
  • Liu F, Luo S, Liu D, et al. Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interfaces. 2017;9(39):33791–33801. doi:10.1021/acsami.7b08382
  • Sk MM, Yue CY. Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors. J Mater Chem A Mater. 2014;2(8):2830–2838. doi:10.1039/C3TA14309K
  • Sun Z, Zhang J, Ye F, et al. Vulcanization treatment: an effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J Power Sources. 2019;443:227246. doi:10.1016/j.jpowsour.2019.227246
  • Cong HP, Ren XC, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci. 2013;6(4):1185–1191. doi:10.1039/c2ee24203f
  • Wang K, Wu H, Meng Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small. 2014;10(1):14–31. doi:10.1002/smll.201301991
  • Ji SH, Chodankar NR, Kim DH. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes. Electrochim Acta. 2019;325:134879.
  • Ji SH, Chodankar NR, Jang WS, et al. High mass loading of H-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor. Electrochim Acta. 2019;299:245–252.