615
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topology optimised novel lattice structures for enhanced energy absorption and impact resistance

, &
Article: e2361463 | Received 31 Mar 2024, Accepted 23 May 2024, Published online: 19 Jun 2024

References

  • Wang W, Jin Y, Mu Y, et al. A novel tubular structure with negative Poisson’s ratio based on gyroid-type triply periodic minimal surfaces. Virtual Phys Prototyp. 2023;18(1):e2203701. doi:10.1080/17452759.2023.2203701
  • Ha CS, Lakes RS, Plesha ME. Cubic negative stiffness lattice structure for energy absorption: numerical and experimental studies. Int J Solids Struct 2019;178–179:127–135. doi:10.1016/j.ijsolstr.2019.06.024
  • Li Z, Chen Z, Liu J, et al. Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual Phys Prototyp. 2020;15(2):163–177. doi:10.1080/17452759.2019.1710919
  • Zhang J, Huang H, Liu G, et al. Stiffness and energy absorption of additive manufactured hybrid lattice structures. Virtual Phys Prototyp. 2021;16(4):428–443. doi:10.1080/17452759.2021.1954405
  • Peng C, Marzocca P, Tran P. Triply periodic minimal surfaces based honeycomb structures with tuneable mechanical responses. Virtual Phys Prototyp. 2023;18(1):e2125879. doi:10.1080/17452759.2022.2125879
  • Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature. 2017;543(7646):533–537. doi:10.1038/nature21075
  • Altamimi S, Lee DW, Barsoum I, et al. On stiffness, strength, anisotropy, and buckling of 30 strut-based lattices with cubic crystal structures. Adv Eng Mater 2022;24(7). doi:10.1002/adem.202101379
  • Almesmari A, Alagha AN, Naji MM, et al. Recent advancements in design optimization of lattice structured materials. Adv Eng Mater 2023. doi:10.1002/adem.202201780
  • Uddin MA, Barsoum I, Kumar S, et al. Enhancing compressive performance in 3D printed pyramidal lattice structures with geometrically tailored I-shaped struts. Mater Des 2024;237:112524. doi:10.1016/j.matdes.2023.112524
  • Ejeh CJ, Barsoum I, Abou-Ali AM, et al. Combining multiple lattice-topology functional grading strategies for enhancing the dynamic compressive behavior of TPMS-based metamaterials. J Mater Res Technol. 2023;27:6076–6093. doi:10.1016/j.jmrt.2023.10.247
  • Ejeh CJ, Barsoum I, Abu Al-Rub RK. Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. Int J Mech Sci 2022;223(January). doi:10.1016/j.ijmecsci.2022.107293
  • Viswanath A, Khan KA, Barsoum I. Design of novel isosurface strut-based lattice structures: effective stiffness, strength, anisotropy and fatigue properties. Mater Des 2022;224. doi:10.1016/j.matdes.2022.111293
  • Xiao Z, Yang Y, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 2018;143:27–37. doi:10.1016/j.matdes.2018.01.023
  • Alawwa F, Barsoum I, Al-rub RKA. Modeling, testing, and optimization of novel lattice structures for enhanced mechanical performance. Mech Adv Mater Struct 2023: 2262987. doi:10.1080/15376494.2023.2262987
  • Almesmari A, Barsoum I, Al-Rub RKA. Modelling, optimization, and testing of novel cuboidal spherical plate lattice structures. Virtual Phys Prototyp. 2024;19(1):e2308514. doi:10.1080/17452759.2024.2308514
  • Jia J, Da D, Hu J, et al. Crashworthiness design of periodic cellular structures using topology optimization. Compos Struct 2021;271; doi:10.1016/j.compstruct.2021.114164
  • Chen W, Xia L, Yang J, et al. Optimal microstructures of elastoplastic cellular materials under various macroscopic strains. Mech Mater 2018;118:120–132. doi:10.1016/j.mechmat.2017.10.002
  • Zeng Q, Duan S, Zhao Z, et al. Inverse design of energy-absorbing metamaterials by topology optimization. Adv Sci 2022: 1–10. doi:10.1002/advs.202204977
  • Huang X, Xie YM. Optimal design of energy absorption structures. In: Evolutionary topology optimization of continuum structures. Chichester: John Wiley & Sons, Ltd; 2010. p. 151–171. doi:10.1002/9780470689486.ch8
  • Huang X, Xie YM, Lu G. Topology optimization of energy-absorbing structures. Int J Crashworthiness. 2007;12(6):663–675. doi:10.1080/13588260701497862
  • Huang X, Xie YM. Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 2008;36(6):597–606. doi:10.1007/s00158-007-0196-1
  • Huang X, Zhou SW, Xie YM, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 2013;67:397–407. doi:10.1016/j.commatsci.2012.09.018
  • Xie YM, Zuo ZH, Huang X, et al. Convergence of topological patterns of optimal periodic structures under multiple scales. Struct Multidiscip Optim 2012;46(1):41–50. doi:10.1007/s00158-011-0750-8
  • Bohara RP, Linforth S, Nguyen T, et al. Novel lightweight high-energy absorbing auxetic structures guided by topology optimisation. Int J Mech Sci 2021;211; doi:10.1016/j.ijmecsci.2021.106793
  • Huang X, Xie YM. Topology optimization of nonlinear continuum structures. In: Evolutionary topology optimization of continuum structures. John Wiley & Sons, Ltd; 2010. p. 121–150. doi:10.1002/9780470689486.ch7
  • Zuo ZH, Xie YM. A simple and compact Python code for complex 3D topology optimization. Adv Eng Softw 2015;85:1–11. doi:10.1016/j.advengsoft.2015.02.006
  • Zhao Z-L, Rong Y, Yan Y, et al. A subdomain-based parallel strategy for structural topology optimization. Acta Mech Sin 2023;39(9):422357. doi:10.1007/s10409-023-22357-x
  • Jog CS, Haber RB. Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng. 1996;130(3):203–226. doi:10.1016/0045-7825(95)00928-0
  • Huang X, Xie YM. Bi-Directional evolutionary structural optimization method. In: Evolutionary topology optimization of continuum structures. Chichester: John Wiley & Sons, Ltd; 2010. p. 17–38. doi:10.1002/9780470689486.ch3
  • Thota J, Trabia MB, O’Toole BJ. Computational prediction of low impact shock propagation in a lab-scale space bolted frame structure. Int J Comput Methods Exp Meas. 2015;3(2):139–149. doi:10.2495/CMEM-V3-N2-139-149
  • Abueidda DW, Kang Z, Koric S, et al. Topology optimization for three-dimensional elastoplastic architected materials using a path-dependent adjoint method. Int J Numer Methods Eng 2021;122(8):1889–1910. doi:10.1002/nme.6604
  • Maute K, Schwarz S, Ramm E. Adaptive topology optimization of elastoplastic structures. Struct Optim 1998;15(2):81–91. doi:10.1007/BF01278493
  • Li L, Zhang G, Khandelwal K. Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 2017;112:737–775. doi:10.1002/nme
  • Patel NM, Kang BS, Renaud JE, et al. Crashworthiness design using topology optimization. J Mech Des Trans ASME. 2009;131(6). doi:10.1115/1.3116256
  • Li QM, Magkiriadis I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. J Cell Plast 2006;42(5):371–392. doi:10.1177/0021955X06063519
  • Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements. Polym Eng & Sci. 1981;21(15):1010–1014. doi:10.1002/pen.760211505
  • Buhl T, Pedersen CBW, Sigmund O. Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 2000;19(2):93–104. doi:10.1007/s001580050089
  • Alkhatib SE, Karrech A, Sercombe TB. Isotropic energy absorption of topology optimized lattice structure. Thin-Walled Struct 2023;182:110220. doi:10.1016/j.tws.2022.110220
  • Alkhatib SE, Xu S, Lu G, et al. Rate-dependent behaviour of additively manufactured topology optimised lattice structures. Thin-Walled Struct 2024;198:111710. doi:10.1016/j.tws.2024.111710
  • Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 2003;40(8):1907–1921. doi:10.1016/S0020-7683(03)00024-6
  • Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 2006;43(2):266–278. doi:10.1016/j.ijsolstr.2005.03.055
  • Baghous N, Barsoum I, Abu Al-Rub RK. Generalized yield surface for sheet-based triply periodic minimal surface lattices. Int J Mech Sci 2023;252; doi:10.1016/j.ijmecsci.2023.108370
  • Baghous N, Barsoum I, Abu Al-Rub RK. The effect of Lode parameter on the yield surface of Schoen’s IWP triply periodic minimal surface lattice. Mech Mater 2022;175; doi:10.1016/j.mechmat.2022.104473
  • Abu Al-Rub RK, Lee D-W, Khan KA, et al. Effective anisotropic elastic and plastic yield properties of periodic foams derived from triply periodic Schoen’s I-WP minimal surface. J Eng Mech. 2020;146(5):1–19. doi:10.1061/(asce)em.1943-7889.0001759
  • Abueidda DW, Abu Al-Rub RK, Dalaq AS, et al. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech Mater 2016;95:102–115. doi:10.1016/j.mechmat.2016.01.004
  • Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids. 2001;49:1747–1769. doi:10.1016/S0022-5096(01)00010-2
  • Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids. 1963;11(2):127–140. doi:10.1016/0022-5096(63)90060-7
  • Grenestedt JL. Effective elastic behavior of some models for perfect cellular solids. Int J Solids Struct 1999;36(10):1471–1501. doi:10.1016/S0020-7683(98)00048-1
  • Chen Z, Wu X, Xie YM, et al. Re-entrant auxetic lattices with enhanced stiffness: a numerical study. Int J Mech Sci 2020;178:105619. doi:10.1016/j.ijmecsci.2020.105619
  • Ruan H, Ning J, Wang X, et al. Novel tubular structures with negative Poisson’s ratio and high stiffness. Phys Status Solidi. 2021;258(4):2000503. doi:10.1002/pssb.202000503
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A. 1952;65(5):349. doi:10.1088/0370-1298/65/5/307
  • Voigt W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). 1st ed. Wiesbaden: Vieweg + Teubner Verlag Wiesbaden; 1966. doi:10.1007/978-3-663-15884-4
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - J Appl Math Mech / Zeitschrift für Angew. Math. und Mech. 1929;9(1):49–58. doi:10.1002/zamm.19290090104
  • Ran Z, Zou C, Wei Z, et al. VELAS: An open-source toolbox for visualization and analysis of elastic anisotropy. Comput Phys Commun 2023;283; doi:10.1016/j.cpc.2022.108540
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett Aug 2008;101(5). doi:10.1103/PhysRevLett.101.055504
  • Tanner RI. Rheo-optical properties. In: G Allen, JC Bevington, editor. Comprehensive polymer science and supplements. Amsterdam: Pergamon; 1989. p. 633–641. doi:10.1016/B978-0-08-096701-1.00056-2
  • Viotti ID, Gomes GF. Delamination identification in sandwich composite structures using machine learning techniques. Comput Struct 2023;280:106990. doi:10.1016/j.compstruc.2023.106990
  • Almesmari A, Sheikh-ahmad J, Jarrar F. Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. J Mater Res Technol. 2022;22:1821–1838. doi:10.1016/j.jmrt.2022.12.024
  • Tao Q, Ren P, Shi L, et al. Energy absorption and impact behavior of composite sandwich panels under high-velocity spherical projectile. Int J Impact Eng 2022;162:104143. doi:10.1016/j.ijimpeng.2021.104143
  • Smith M. ABAQUS/standard user’s manual, version 6.9. Providence, RI: Dassault Systèmes Simulia Corp; 2009.
  • Cowper GR, Symonds PS. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams.
  • Barsoum I, Khan F, Molki A, et al. Modeling of ductile crack propagation in expanded thin-walled 6063-T5 aluminum tubes. Int J Mech Sci 2014;80:160–168. doi:10.1016/j.ijmecsci.2014.01.012
  • Lundkvist A, Barsoum I, Barsoum Z, et al. Geometric and material modelling aspects for strength prediction of riveted joints. Metals (Basel). 2023;13(3). doi:10.3390/met13030500
  • Elkhodbia M, Mubarak G, Gadala I, et al. Experimental and computational failure analysis of hydrogen embrittled steel cords in a reinforced thermoplastic composite pipe. Eng Fail Anal 2024;157:107962. doi:10.1016/j.engfailanal.2024.107962
  • Schneider J, Schiffer A, Hafeez F, et al. Dynamic crushing of tailored honeycombs realized via additive manufacturing. Int J Mech Sci 2022;219(August 2021):107126. doi:10.1016/j.ijmecsci.2022.107126
  • Yazdani Sarvestani H, Akbarzadeh AH, Niknam H, et al. 3D printed architected polymeric sandwich panels: energy absorption and structural performance. Compos Struct. 2018;200:886–909. doi:10.1016/j.compstruct.2018.04.002