486
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in surface finish for additive manufacturing of metal parts: a comprehensive review of plasma electrolytic polishing (PEP)

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2364222 | Received 16 Mar 2024, Accepted 29 May 2024, Published online: 19 Jun 2024

References

  • Hull CW. Apparatus for production of three-dimensional objects by stereolithography, 1986.
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Omiyale BO, Olugbade TO, Abioye TE, et al. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review. Mater Sci Technol. 2022;38:391–408. doi:10.1080/02670836.2022.2045549
  • Vasco JC. Additive manufacturing for the automotive industry. Addit Manuf. 2021: 505–530. doi:10.1016/B978-0-12-818411-0.00010-0
  • Zhao N, Parthasarathy M, Patil S, et al. Direct additive manufacturing of metal parts for automotive applications. J Manuf Syst. 2023;68:368–375. doi:10.1016/j.jmsy.2023.04.008
  • Veeman D, Mahesh VS, Madabushi SS, et al. Additive manufacturing and its need, role, applications in the automotive industry. 2021: pp. 358–367. https://doi.org/10.4018/978-1-7998-4939-1.ch017
  • Blakey-Milner BA, Gradl PR, Snedden GC, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. https://api.semanticscholar.org/CorpusID:237670030.
  • Najmon JC, Raeisi S, Tovar A. Review of additive manufacturing technologies and applications in the aerospace industry. Addit Manuf Aerospace Ind. 2019. https://api.semanticscholar.org/CorpusID:115292453.
  • Liu R, Wang Z, Sparks T, et al. Aerospace applications of laser additive manufacturing. 2017. https://api.semanticscholar.org/CorpusID:113601331
  • Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng G J Aerosp Eng. 2015;229:2132–2147. https://api.semanticscholar.org/CorpusID:137549412
  • Javaid M, Haleem A. Additive manufacturing applications in medical cases: a literature based review. Alexandria J Med. 2018;54:411–422. doi:10.1016/j.ajme.2017.09.003
  • Lakkala P, Munnangi SR, Bandari S, et al. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: a review. Int J Pharm. 2023;5. https://api.semanticscholar.org/CorpusID:255566499
  • Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication. 2017;9. https://api.semanticscholar.org/CorpusID:52835412
  • Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf. 2019. https://api.semanticscholar.org/CorpusID:164598350
  •  Salmi M. Additive Manufacturing Processes in Medical Applications. Materials (Basel). 2021;14. https://api.semanticscholar.org/CorpusID:230784658
  • Tay YWD, Panda B, Leong KF. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12:261–276. doi:10.1080/17452759.2017.1326724
  • Camacho DD, Clayton P, O’brien WJ, et al. Applications of additive manufacturing in the construction industry – a forward-looking review. Autom Constr. 2018;89:110–119. https://api.semanticscholar.org/CorpusID:117365755
  • Bos FP, Wolfs R, Ahmed ZY, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11:209–225. https://api.semanticscholar.org/CorpusID:114225843
  • Paul AA, Aladese AD, Marks RS. Additive manufacturing applications in biosensors technologies. Biosensors (Basel). 2024;14:60. doi:10.3390/bios14020060
  • Tan TTHW, Chua CK. A review of printed passive electronic components through fully additive manufacturing methods. Virtual Phys Prototyp. 2016;11:271–288. doi:10.1080/17452759.2016.1217586
  • Ficzere P. Additive manufacturing in the military and defence industry. Design of Machines and Structures. 2022. https://api.semanticscholar.org/CorpusID:253614005
  • Segonds F. Design by additive manufacturing: an application in aeronautics and defence. Virtual Phys Prototyp. 2018;13:237–245. doi:10.1080/17452759.2018.1498660
  • Gonzaga E, Tuazon BJ, Garcia JAV, et al. Additive manufacturing applications in maritime education. Diffusion Found Mater Appl. 2023;32:19–26. doi:10.4028/p-kt7n60
  • Rouway M, Tarfaoui M, Chakhchaoui N, et al. Additive manufacturing and composite materials for marine energy: case of tidal turbine., 3D Print. Addit Manuf. 2021;10(6):1309–1319. https://api.semanticscholar.org/CorpusID:266372695.
  • Marchese SS, Epasto G, Crupi V, et al. Tensile response of fibre-reinforced plastics produced by additive manufacturing for marine applications. J Mar Sci Eng. 2023. https://api.semanticscholar.org/CorpusID:256651826
  • Vishnukumar M, Pramod R, Kannan AR. Wire arc additive manufacturing for repairing aluminium structures in marine applications. Mater Lett. 2021;299:130112. https://api.semanticscholar.org/CorpusID:236396094
  • Saheb SH, Kumar JV. A comprehensive review on additive manufacturing applications, in: 2020: p. 020024. https://doi.org/10.1063/5.0026202
  • Milewski JO. Additive manufacturing of metals: from fundamental technology to rocket nozzles, medical implants, and custom jewelry. Addit Manuf Metals. 2017. https://api.semanticscholar.org/CorpusID:136050727
  • Di̇lek E, Yıldırım M, Uzun M. Additive manufacturing (3D printing) in technical fashion industry applications, in: 2021. https://api.semanticscholar.org/CorpusID:237346095
  • Akhoundi B. A mini-review of using additive manufacturing in the fashion & textile industry? Trends Textile Eng Fashion Technol. 2023. https://api.semanticscholar.org/CorpusID:259806315
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Boban J, Ahmed A, Jithinraj EK, et al. Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects. Int J Adv Manuf Technol. 2022;121:83–125. doi:10.1007/s00170-022-09382-y
  • Nestler K, Böttger-Hiller F, Adamitzki W, et al. Plasma electrolytic polishing – an overview of applied technologies and current challenges to extend the polishable material range. Proc CIRP. 2016;42:503–507. doi:10.1016/j.procir.2016.02.240
  • Chen HL, Zhang YX. Eco-friendly oxalic acid and citric acid mixed electrolytes using for plasma electrolytic polishing 304 stainless steel. J Phys Conf Ser. 2022;2345:012029. doi:10.1088/1742-6596/2345/1/012029
  • Ablyaz TR, Muratov KR, Radkevich MM, et al. Electrolytic plasma surface polishing of complex components produced by selective laser melting. Russ Eng Res. 2018;38:491–492. doi:10.3103/S1068798X18060035
  • Stepputat VN, Zeidler H, Safranchik D, et al. Investigation of post-processing of additively manufactured nitinol smart springs with plasma-electrolytic polishing. Materials (Basel). 2021;14:4093. doi:10.3390/ma14154093
  • Navickaitė K, Roßmann K, Nestler K, et al. Plasma electrolytic polishing of porous nitinol structures. Plasma. 2022;5:555–568. doi:10.3390/plasma5040039
  • Yang L, Laugel N, Housden J, et al. Plasma additive layer manufacture smoothing (PALMS) technology – an industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel. Addit Manuf. 2020;34:101204. doi:10.1016/j.addma.2020.101204
  • Jian-Yuan Lee APN, Yeo SH. A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual Phys Prototyp. 2021;16:68–96. doi:10.1080/17452759.2020.1830346
  • Hashmi AW, Mali HS, Kunkel ME. Surface characteristics improvement methods for metal additively manufactured parts: a review. Adv Mater Process Technol. 2022;8:4524–4563. doi:10.1080/2374068X.2022.2077535
  • Ye C, Zhang C, Zhao J, et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review. J Mater Eng Perform. 2021;30:6407–6425. https://api.semanticscholar.org/CorpusID:236438140
  • Peng X, Kong LB, Fuh JYH, et al. A review of post-processing technologies in additive manufacturing. in: 2021. https://api.semanticscholar.org/CorpusID:234847569
  • Khan HM, Karabulut Y, Kitay O, et al. Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Mach Sci Technol. 2020;25:118–176. https://api.semanticscholar.org/CorpusID:231741715
  • Kumbhar NN, Mulay AV. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Instit Eng India Ser C. 2018;99:481–487. https://api.semanticscholar.org/CorpusID:115005424
  • Demisse W, Xu J, Rice L, et al. Review of internal and external surface finishing technologies for additively manufactured metallic alloys components and new frontiers. Progr Addit Manuf. 2023;8:1433–1453. doi:10.1007/s40964-023-00412-z
  • Shi D, Gibson I. Improving surface quality of selective laser sintered rapid prototype parts using robotic finishing. Proc Inst Mech Eng B J Eng Manuf. 2000;214:197–203. doi:10.1243/0954405001517586
  • Ramos-Grez JA, Bourell DL. Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods. Int J Mater Prod Technol. 2004;21:297. doi:10.1504/IJMPT.2004.004944
  • Alrbaey K, Wimpenny D, Tosi R, et al. On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform. 2014;23:2139–2148. doi:10.1007/s11665-014-0993-9
  • Vaithilingam J, Goodridge RD, Hague RJM, et al. The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J Mater Process Technol. 2016;232:1–8. doi:10.1016/j.jmatprotec.2016.01.022
  • Yasa E, Deckers J, Kruth J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J. 2011;17:312–327. doi:10.1108/13552541111156450
  • Morgan RH, Papworth AJ, Sutcliffe C, et al. High density net shape components by direct laser re-melting of single-phase powders. J Mater Sci. 2002;37:3093–3100. doi:10.1023/A:1016185606642.
  • Simoni F, Huxol A, Villmer F-J. Improving surface quality in selective laser melting based tool making. J Intell Manuf. 2021;32:1927–1938. doi:10.1007/s10845-021-01744-9
  • Schanz J, Hofele M, Hitzler L, et al. Erratum to: Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. in: 2016: pp. E3–E3. https://doi.org/10.1007/978-981-10-1082-8_19
  • Alfieri V, Argenio P, Caiazzo F, et al. Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Materials (Basel). 2016;10:30. doi:10.3390/ma10010030
  • Ma CP, Guan YC, Zhou W. Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng. 2017;93:171–177. doi:10.1016/j.optlaseng.2017.02.005
  • Zhihao F, Libin L, Longfei C, et al. Laser polishing of additive manufactured superalloy. Proc CIRP. 2018;71:150–154. doi:10.1016/j.procir.2018.05.088
  • Worts N, Jones J, Squier J. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Opt Commun. 2019;430:352–357. doi:10.1016/j.optcom.2018.08.055
  • Bhaduri D, Ghara T, Penchev P, et al. Pulsed laser polishing of selective laser melted aluminium alloy parts. Appl Surf Sci. 2021;558:149887. doi:10.1016/j.apsusc.2021.149887
  • Han S, Salvatore F, Rech J, et al. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng. 2020;64:20–33. doi:10.1016/j.precisioneng.2020.03.006
  • Bouland C, Urlea V, Beaubier K, et al. Abrasive flow machining of laser powder bed-fused parts: numerical modeling and experimental validation. J Mater Process Technol. 2019;273:116262. doi:10.1016/j.jmatprotec.2019.116262
  • Peng C, Fu Y, Wei H, et al. Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining. Proc CIRP. 2018;71:386–389. doi:10.1016/j.procir.2018.05.046
  • Duval-Chaneac MS, Han S, Claudin C, et al. Characterization of maraging steel 300 internal surface created by selective laser melting (SLM) after abrasive flow machining (AFM). Procedia CIRP. 2018;77:359–362. doi:10.1016/j.procir.2018.09.035
  • Sehijpal Singh HSS, Kumar P. Experimental studies on mechanism of material removal in abrasive flow machining process. Mater Manuf Process. 2008;23:714–718. doi:10.1080/10426910802317110
  • Atzeni E, Barletta M, Calignano F, et al. Abrasive fluidized bed (AFB) finishing of AlSi10Mg substrates manufactured by direct metal laser sintering (DMLS). Addit Manuf. 2016;10:15–23. doi:10.1016/j.addma.2016.01.005
  • Karakurt I, Ho KY, Ledford C, et al. Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Proc Manuf. 2018;26:798–805. doi:10.1016/j.promfg.2018.07.097
  • Zhang J, Chaudhari A, Wang H. Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Process. 2019;45:710–719. doi:10.1016/j.jmapro.2019.07.044
  • Tan KL, Yeo SH. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear. 2017;378–379:90–95. doi:10.1016/j.wear.2017.02.030.
  • Liu X, Wang J, Zhu J, et al. Ultrasonic abrasive polishing of additive manufactured parts: an experimental study on the effects of process parameters on polishing performance. Adv Product Eng Manage. 2022. https://api.semanticscholar.org/CorpusID:252443008
  • Nagalingam AP, Yeo SH. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear. 2018;414–415:89–100. doi:10.1016/j.wear.2018.08.006.
  • Prasanth AS, Thiruchelvam C, Yuvaraj HK, et al. Effect of internal surface finishing using hydrodynamic cavitation abrasive finishing (HCAF) process on the mechanical properties of additively manufactured components. in: 2019. https://api.semanticscholar.org/CorpusID:226212332.
  • Nagalingam AP, Yuvaraj HK, Yeo SH. Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components. Addit Manuf. 2020;33:101110. https://api.semanticscholar.org/CorpusID:213878864.
  • Lesyk DA, Martinez S, Mordyuk BN, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol. 2020;381:125136. doi:10.1016/j.surfcoat.2019.125136
  • Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf Coat Technol. 2019;378:124993. doi:10.1016/j.surfcoat.2019.124993
  • Portella Q, Chemkhi M, Retraint D. Influence of surface mechanical attrition treatment (SMAT) post-treatment on microstructural, mechanical and tensile behaviour of additive manufactured AISI 316L. Mater Charact. 2020;167:110463. doi:10.1016/j.matchar.2020.110463
  • Bai Y, Zhao C, Yang J, et al. Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J Mater Process Technol. 2021;288:116906. doi:10.1016/j.jmatprotec.2020.116906
  • Kaynak Y, Kitay O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit Manuf. 2019;26:84–93. doi:10.1016/j.addma.2018.12.021
  • Bagehorn S, Wehr J, Maier HJ. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti–6Al–4V parts. Int J Fatigue. 2017;102:135–142. doi:10.1016/j.ijfatigue.2017.05.008
  • Hassanin H, Modica F, El-Sayed MA, et al. Manufacturing of Ti–6Al–4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining. Adv Eng Mater. 2016;18:1544–1549. doi:10.1002/adem.201600172
  • Chan KS, Koike M, Mason RL, et al. Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall Mater Trans A. 2013;44:1010–1022. doi:10.1007/s11661-012-1470-4
  • Sofu MM, Taylan F, Ermergen T. Genetic evolutionary approach for surface roughness prediction of laser sintered Ti–6Al–4V in EDM. Zeitschr Naturforsch A. 2021;76:253–263. doi:10.1515/zna-2020-0267
  • Jithinraj EK, Ahmed A, Boban J. Improving the surface integrity of additively manufactured curved and inclined metallic surfaces using thermo-electric energy assisted polishing. Surf Coat Technol. 2022;446:128803. doi:10.1016/j.surfcoat.2022.128803
  • Boban J, Ahmed A. Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J Mater Process Technol. 2021;291:117013. doi:10.1016/j.jmatprotec.2020.117013
  • Basha MM, Basha SM, Jain VK, et al. State of the art on chemical and electrochemical based finishing processes for additive manufactured features. Addit Manuf. 2022;58:103028. doi:10.1016/j.addma.2022.103028
  • Bezuidenhout M, Ter Haar G, Becker T, et al. The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V. Mater Today Commun. 2020;25:101396. doi:10.1016/j.mtcomm.2020.101396
  • Tyagi P, Goulet T, Riso C, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf. 2019;25:32–38. doi:10.1016/j.addma.2018.11.001
  • Jain S, Corliss M, Tai B, et al. Electrochemical polishing of selective laser melted Inconel 718. Proc Manuf. 2019;34:239–246. doi:10.1016/j.promfg.2019.06.145
  • Alrbaey K, Wimpenny DI, Al-Barzinjy AA, et al. Electropolishing of re-melted SLM stainless steel 316L parts using deep eutectic solvents: 3 × 3 full factorial design. J Mater Eng Perform. 2016;25:2836–2846. doi:10.1007/s11665-016-2140-2
  • Baicheng Z, Xiaohua L, Jiaming B, et al. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater Des. 2017;116:531–537. doi:10.1016/j.matdes.2016.11.103
  • Pyka G, Burakowski A, Kerckhofs G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater. 2012;14:363–370. doi:10.1002/adem.201100344
  • Ermergen T, Taylan F. Review on surface quality improvement of additively manufactured metals by laser polishing. Arab J Sci Eng. 2021;46:7125–7141. doi:10.1007/s13369-021-05658-9
  • Boban J, Ahmed A. Electric discharge assisted post-processing performance of high strength-to-weight ratio alloys fabricated using metal additive manufacturing. CIRP J Manuf Sci Technol. 2022;39:159–174. doi:10.1016/j.cirpj.2022.08.002
  • Belkin PN, Kusmanov SA, Parfenov EV. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces. Appl Surf Sci Adv. 2020;1. doi:10.1016/j.apsadv.2020.100016
  • Zeidler H, Böttger-Hiller F. Plasma-electrolytic polishing as a post-processing technology for additively manufactured parts. Chem Ing Tech. 2022;94:1024–1029. doi:10.1002/cite.202200043.
  • Löber L, Flache C, Petters R, et al. Comparison of different post processing technologies for SLM generated 316 l steel parts. Rapid Prototyp J. 2013;19:173–179. doi:10.1108/13552541311312166
  • Parfenov EV, Mukaeva VR, Farrakhov RG, et al. Plasma electrolytic treatments for advanced surface finishing technologies Электролитно-плазменные технологии для перспективной финишной обработки материалов, 2019.
  • Yu Nagulin K, Terent’ev AA, Belov MD, et al. Electrolytic-plasma jet polishing of additively manufactured gas turbine engine components. Russian Aeronaut. 2022;65:822–830. doi:10.3103/S1068799822040237.
  • Wu Y, Wang L, Zhao J, et al. Spray electrolyte plasma polishing of GH3536 superalloy manufactured by selective laser melting. Int J Adv Manuf Technol. 2022;123:2669–2678. doi:10.1007/s00170-022-10283-3
  • Quitzke S, Martin A, Schubert A. Localized surface functionalization of steel by jet-plasma electrolytic polishing, n.d. www.euspen.eu.
  • Kranhold C, Kröning O, Schulze H-P, et al. Investigation of stable boundary conditions for the Jet-electrolytic plasma polishing (Jet-ePP). Procedia CIRP. 2020;95:987–992. doi:10.1016/j.procir.2020.02.294
  • B H, Zeidler HF. Ultrasonic-assisted plasma-electrolytic polishing. In: Proceedings of the 15th international symposium on electro-chemical machining technology, Saarbrucken. 2019.
  •  Chen Y, Yi J, Wang Z, et al. Experimental study on ultrasonic-assisted electrolyte plasma polishing of SUS304 stainless steel. Int J Adv Manufac Technol. 2023;124:2835–2846. doi:10.1007/s00170-022-10646-w.
  • Kashapov LN, Kashapov NF, Kashapov RN, et al. Plasma electrolytic treatment of products after selective laser melting. J Phys Conf Ser. 2016;669:12029. doi:10.1088/1742-6596/669/1/012029
  • Gaysin AF, Gil’mutdinov AK, Mirkhanov DN. Electrolytic-plasma treatment of the surface of a part produced with the use of additive technology. Met Sci Heat Treat. 2018;60:128–132. doi:10.1007/S11041-018-0250-1/TABLES/1
  • Loaldi D, Kain M, Haahr-Lillevang L, et al. (2019). Comparison of Selective Laser Melting Post-Processes based on Amplitude and Functional Surface Roughness parameters. Abstract from Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing, Nantes, France.
  • Bernhardt A, Schneider J, Schroeder A, et al. Surface conditioning of additively manufactured titanium implants and its influence on materials properties and in vitro biocompatibility. Mater Sci Eng C. 2021;119:111631. doi:10.1016/j.msec.2020.111631.
  • Sabotin I, Jerman M, Lebar A, et al. Effects of plasma electrolytic polishing on SLM printed microfluidic platform. Adv Technol Mater. 2022;47:19–23. doi:10.24867/ATM-2022-1-004
  • Zeidler H, Aliyev R, Gindorf F. Efficient finishing of laser beam melting additive manufactured parts. J Manuf Mater Process. 2021;5:106. doi:10.3390/jmmp5040106
  • Seo B, Park H-K, Park KB, et al. Effect of hydrogen peroxide on Cr oxide formation of additive manufactured CoCr alloys during plasma electrolytic polishing. Mater Lett. 2021;294:129736. doi:10.1016/j.matlet.2021.129736
  • Seo B, Park H-K, Kim HG, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing. Surf Coat Technol. 2021;406:126640. doi:10.1016/j.surfcoat.2020.126640
  • Navickaitė K, Nestler K, Böttger-Hiller F, et al. Efficient polishing of additive manufactured titanium alloys. Proc CIRP. 2022;108:346–351. doi:10.1016/j.procir.2022.03.057
  • Navickaite K, Nestler K, Kain M, et al. Effective polishing of inner surfaces of additive manufactured inserts for polymer extrusion using Plasma Electrolytic Polishing, in: 2022.
  • Muratov KR, Gashev EA, Ablyaz TR. Recommendations for electrolytic plasma polishing of chromium and titanium alloys. Russ Eng Res. 2022;42:829–831. doi:10.3103/S1068798X22080172
  • Smirnov AS, Galinovsky AL, Martysyuk DA. Reducing additive product surface roughness by electrochemical processing methods, proceedings of higher educational institutions. Маchine Build. 2022: 16–23. doi:10.18698/0536-1044-2022-7-16-23
  • Feng S, Kamat AM, Pei Y. Design and fabrication of conformal cooling channels in molds: review and progress updates. Int J Heat Mass Transf. 2021;171:121082. doi:10.1016/j.ijheatmasstransfer.2021.121082
  • Tan C, Zhou K, Ma W, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 Maraging steel. Mater Des. 2017;134:23–34. doi:10.1016/j.matdes.2017.08.026
  • Navickaitė K. Effective polishing of inner surfaces of additive manufactured inserts for polymer extrusion using Plasma Electrolytic Polishing, 2022.
  • Wong K, Ho JY, Wong TN. Fabrication of heat sinks by Selective Laser Melting for convective heat transfer applications. Virtual Phys Prototyp. 2016;11:159–165. doi:10.1080/17452759.2016.1211849
  • Trevisan F, Calignano F, Lorusso M, et al. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel). 2017;10. doi:10.3390/ma10010076
  • C M, Zhang L-C, Attar H, et al. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater Technol. 2016;31:66–76. doi:10.1179/1753555715Y.0000000076
  • Singla AK, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4 V alloy: process parameters, defects and post-treatments. J Manuf Process. 2021;64:161–187. doi:10.1016/j.jmapro.2021.01.009
  • Acharya S, Soni R, Suwas S, et al. Additive manufacturing of Co–Cr alloys for biomedical applications: a concise review. J Mater Res. 2021;36:3746–3760. doi:10.1557/s43578-021-00244-z
  • Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • Vahedi Nemani A, Ghaffari M, Sabet Bokati K, et al. Advancements in additive manufacturing for copper-based alloys and composites: a comprehensive review. J Manuf Mater Process. 2024;8. doi:10.3390/jmmp8020054
  • Zeidler H, Böttger-Hiller F, Penzel M, et al. Electrolyte flow in plasma-electrolytic polishing. In: 16th International symposium on electrochemical machining technology INSECT 2020. 2020.
  • Zeidler H, Böttger-Hiller F, Penzel M, et al. Workpiece temperature during plasma-electrolytic polishing, n.d.
  • Zeidler H, Boettger-Hiller F, Edelmann J, et al. Surface finish machining of medical parts using plasma electrolytic polishing. Proc CIRP. 2016;49:83–87. doi:10.1016/j.procir.2015.07.038
  • Korolyov A, Bubulis A, Vėžys J, et al. Electrolytic plasma polishing of NiTi alloy. Math Model Eng. 2021;7:70–80. doi:10.21595/mme.2021.22351
  • Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf. 2017;13:103–112. doi:10.1016/j.addma.2016.10.010
  • Alfaify A, Saleh M, Abdullah FM, et al. Design for additive manufacturing: a systematic review. Sustainability. 2020;12. doi:10.3390/su12197936
  • Kanbur BB, Zhou Y, Shen S, et al. Metal Additive manufacturing of plastic injection molds with conformal cooling channels. Polymers (Basel). 2022;14. doi:10.3390/polym14030424
  • Shinde MS, Ashtankar KM. Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Adv Mech Eng. 2017;9:1687814017699764. doi:10.1177/1687814017699764
  • Tan C, Wang D, Ma W, et al. Design and additive manufacturing of novel conformal cooling molds. Mater Des. 2020;196:109147. doi:10.1016/j.matdes.2020.109147
  • Szabó L. Additive manufacturing of cooling systems used in power electronics. A brief survey. In: 2022 29th International workshop on electric drives: advances in power electronics for electric drives (IWED). 2022. p. 1–8. https://doi.org/10.1109/IWED54598.2022.9722580.
  • Alimi OA, Meijboom R. Current and future trends of additive manufacturing for chemistry applications: a review. J Mater Sci. 2021;56:16824–16850. doi:10.1007/s10853-021-06362-7
  • Kaur I, Singh P. State-of-the-art in heat exchanger additive manufacturing. Int J Heat Mass Transf. 2021;178:121600. doi:10.1016/j.ijheatmasstransfer.2021.121600
  • Dominguez LA, Xu F, Shokrani A, et al. Guidelines when considering pre & post processing of large metal additive manufactured parts. Proc Manuf. 2020;51:684–691. doi:10.1016/j.promfg.2020.10.096
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/j.mattod.2021.03.020
  • Childerhouse T, Jackson M. Near net shape manufacture of titanium alloy components from powder and wire: a review of state-of-the-art process routes. Metals (Basel). 2019;9. doi:10.3390/met9060689
  • Shamir M, Zhang X, Syed AK, et al. Predicting the effect of surface waviness on fatigue life of a wire + arc additive manufactured Ti–6Al–4V alloy. Materials (Basel). 2023;16. doi:10.3390/ma16155355
  • Zeidler H, Böttger-Hiller F, Penzel M, et al. Workpiece temperature during plasma-electrolytic polishing. In: 16th International Symposium on Electrochemical Machining Technology INSECT. 2020.