220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of printing time components and powder utilisation efficiency of metal selective laser melting process in case of 316L and Ti6Al4V materials

ORCID Icon
Article: e2366508 | Received 16 Mar 2024, Accepted 30 May 2024, Published online: 19 Jun 2024

References

  • O'Leary DE. Gartner's hype cycle and information system research issues. Int J Account Inf Syst. 2008;9(4):240–252. doi:10.1016/j.accinf.2008.09.001
  • Afadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl Sci. 2021;11(3):1213. doi:10.3390/app11031213
  • Ahn DG. Directed energy deposition (DED) process: state of the art. Int J Precis Eng Manuf-Green Tech. 2021;8:703–742. doi:10.1007/s40684-020-00302-7
  • Suwanpreecha C, Seensattayawong P, Vadhanakovint V, et al. Influence of specimen layout on 17-4PH (AISI 630) alloys fabricated by low-cost additive manufacturing. Metall Mater Trans A. 2021;52:1999–2009. doi:10.1007/s11661-021-06211-x
  • Lores A, Azurmendi N, Agote I, et al. A review on recent developments in binder jetting metal additive manufacturing: Materials and process characteristics. Powder Metall. 2019;62(5):267–296. doi:10.1080/00325899.2019.1669299
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Wang L, Li Y, Zhou L, et al. Progress in additive manufacturing, additive repair and fatigue evaluation of aviation titanium alloy blades. Mater Res Lett. 2023;11(12):973–1012. doi:10.1080/21663831.2023.2275599
  • Tjandra J, Alabort E, Barba D, et al. Corrosion, fatigue and wear of additively manufactured Ti alloys for orthopaedic implants. Mater Sci Technol. 2023;39(18):2951–2965. doi:10.1080/02670836.2023.2230417
  • Wiese M, Leiden A, Rogall C, et al. Modeling energy and resource use in additive manufacturing of automotive series parts with multi-jet fusion and selective laser sintering. Procedia CIRP. 2021;98:358–363. doi:10.1016/j.procir.2021.01.117
  • Zhou YH, Zhang ZH, Wang YP, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Addit Manuf. 2019;25:204–217. doi:10.1016/j.addma.2018.10.046
  • Pan X, Qiu C. Promoting columnar-to-equiaxed transition in AlCoCrFeNi high entropy alloy during selective laser melting by adding Cr3C2. Mater Res Lett. 2022;10(12):788–796. doi:10.1080/21663831.2022.2106798
  • Tan C, Zhou K, Ma W, et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater. 2018;19(1):370–380. doi:10.1080/14686996.2018.1455154
  • Colopi M, Caprio L, Demir AG, et al. Selective laser melting of pure Cu with a 1 kW single mode fiber laser. Procedia CIRP. 2018;74:59–63. doi:10.1016/j.procir.2018.08.030
  • Chen K, Wang C, Hong Q, et al. Selective laser melting 316L/CuSn10 multi-materials: Processing optimization, interfacial characterization and mechanical property. J Mater Process Technol. 2020;283:116701. doi:10.1016/j.jmatprotec.2020.116701
  • Kozak J, Zakrzewski T, Witt M, et al. Selected problems of additive manufacturing using SLS/SLM processes. Trans Aerospace Res. 2021;2021(1):24–44. doi:10.2478/tar-2021-0003
  • Pimenov DY, Berti LF, Pintaude G, et al. Influence of selective laser melting process parameters on the surface integrity of difficult-to-cut alloys: comprehensive review and future prospects. Int J Adv Manuf Technol. 2023;127:1071–1102. doi:10.1007/s00170-023-11541-8
  • Philo A, Sutcliffe C, Sillars S, et al. A study into the effects of gas flow inlet design of the renishaw am250 laser powder bed fusion machine using computational modelling. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International; 2017. p. 1203–1219.
  • Gunnerek R, Chen Z, Hryha E. Impact of high-productivity process parameters in powder bed fusion – laser beam on microstructure of stainless steel 316L. Eur J Mater. 2023;3:1. doi:10.1080/26889277.2023.2292987
  • Dennis Edgard J, Kitashima T, Watanabe M. Effect of scan strategy on the formation of a pure nickel single-crystal structure using a flat-top laser beam via laser powder bed fusion. Sci Technol Adv Mater. 2023;24:1. doi:10.1080/14686996.2023.2201380
  • Yao L, Xiao Z, Hoo Z, et al. Mechanism analysis of grain growth dominated by alloy composition gradients during powder bed fusion. Mater Res Lett. 2023;11:(10):814–820. doi:10.1080/21663831.2023.2250826
  • An D, Xiao Y, Liu X, et al. Formation of two distinct cellular structures in 316L stainless steel fabricated by micro-laser beam powder-bed-fusion. Mater Res Lett. 2024;12(1):42–49. doi:10.1080/21663831.2023.2292076
  • Prashanth KG, Scudino S, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett. 2017;5(6):386–390. doi:10.1080/21663831.2017.1299808
  • Gusarov AV, Grigoriev SN, Volosova MA, et al. On productivity of laser additive manufacturing. J Mater Process Technol. 2018;261:213–232. doi:10.1016/j.jmatprotec.2018.05.033
  • Sefene EM. State-of-the-art of selective laser melting process: a comprehensive review. J Manuf Syst. 2022;63:250–274. doi:10.1016/j.jmsy.2022.04.002
  • Ali H, Ma L, Ghadbeigi H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A. 2017;695:211–220. doi:10.1016/j.msea.2017.04.033
  • Armstrong M, Mehrabi H, Naveed N. An overview of modern metal additive manufacturing technology. J Manuf Process. 2022;84:1001–1029. doi:10.1016/j.jmapro.2022.10.060
  • Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol. 2017;243:48–61. doi:10.1016/j.jmatprotec.2016.11.029
  • Liu J, Dong S, Jin X, et al. Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM). Mater Des. 2022;223:111209. doi:10.1016/j.matdes.2022.111209
  • Schwerz C, Schulz F, Natesan E, et al. Increasing productivity of laser powder bed fusion manufactured Hastelloy X through modification of process parameters. J Manuf Process. 2022;78:231–241. doi:10.1016/j.jmapro.2022.04.013
  • Greco S, Gutzeit K, Hotz H, et al. Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int J Adv Manuf Technol. 2020;108:1551–1562. doi:10.1007/s00170-020-05510-8
  • Yao D, An X, Fu H, et al. Dynamic investigation on the powder spreading during selective laser melting additive manufacturing. Addit Manuf. 2021;37:101707. doi:10.1016/j.addma.2020.101707
  • Drechsel K, Lubkowitz V, Albrecht L, et al. Development of an ultrasonically excited recoating process in laser powder bed fusion to process non-spreadable 316L powder. Powder Technol. 2024;432:119153. doi:10.1016/j.powtec.2023.119153
  • Wang L, Li EL, Shen H, et al. Adhesion effects on spreading of metal powders in selective laser melting. Powder Technol. 2020;363:602–610. doi:10.1016/j.powtec.2019.12.048
  • Gibbons DW, Govender P, van der Merwe AF. Metal powder feedstock evaluation and management for powder bed fusion: a review of literature, standards, and practical guidelines. Prog Addit Manuf. 2023. doi:10.1007/s40964-023-00484-x
  • Lutter-Günther M, Gebbe C, Kamps T, et al. Powder recycling in laser beam melting: strategies, consumption modeling and influence on resource efficiency. Prod Eng Res Dev. 2018;12:377–389. doi:10.1007/s11740-018-0790-7
  • Cordova L, Campos M, Tinga T. Revealing the effects of powder reuse for selective laser melting by powder characterization. JOM. 2019;71:1062–1072. doi:10.1007/s11837-018-3305-2
  • Yao D, Wang J, Li M, et al. Segregation of 316L stainless steel powder during spreading in selective laser melting based additive manufacturing. Powder Technol. 2022;397:117096. doi:10.1016/j.powtec.2021.117096
  • Alamos FJ, Schiltz J, Kozlovsky K, et al. Effect of powder reuse on mechanical properties of Ti-6Al-4 V produced through selective laser melting. Int J Refract Met Hard Mater. 2020;91:105273. doi:10.1016/j.ijrmhm.2020.105273
  • Barile C, Casavola C, Paramsamy Kannan V, et al. The influence of AlSi10Mg recycled powder on corrosion-resistance behaviour of additively manufactured components: mechanical aspects and acoustic emission investigation. Archiv Civ Mech Eng. 2022;22:52. doi:10.1007/s43452-022-00375-y
  • Chen Z, Xiang Y, Wei Z, et al. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification. Appl Phys A. 2018;124:313. doi:10.1007/s00339-018-1737-8
  • Andani MT, Dehghani R, Karamooz-Ravari MR, et al. Spatter formation in selective laser melting process using multi-laser technology. Mater Des. 2017;131:460–469. doi:10.1016/j.matdes.2017.06.040
  • Bidare P, Bitharas I, Ward RM, et al. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018;142:107–120. doi:10.1016/j.actamat.2017.09.051
  • Keaveney S, Shmeliov A, Nicolosi V, et al. Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powder. Addit Manuf. 2020;36:101514. doi:10.1016/j.addma.2020.101514
  • Guo Q, Zhao C, Escano LI, et al. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Mater. 2018;151:169–180. doi:10.1016/j.actamat.2018.03.036
  • Kjer MB, Pan Z, Nadimpalli VK, et al. Experimental analysis and spatial component impact of the inert cross flow in open-architecture laser powder bed fusion. J Manuf Mater Process. 2023;7(4):143. doi:10.3390/jmmp7040143
  • Young ZA, Guo Q, Parab ND, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process. Addit Manuf. 2020;36:101438. doi:10.1016/j.addma.2020.101438
  • Gunenthiram V, Peyre P, Schneider M, et al. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol. 2018;251:376–386. doi:10.1016/j.jmatprotec.2017.08.012
  • Sutton AT, Kriewall CS, Leu MC, et al. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit Manuf. 2020;31:100904. doi:10.1016/j.addma.2019.100904
  • Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit Manuf. 2016;10:1–9. doi:10.1016/j.addma.2016.01.004
  • Anwar AB, Pham Q-C. Study of the spatter distribution on the powder bed during selective laser melting. Addit Manuf. 2018;22:86–97. doi:10.1016/j.addma.2018.04.036
  • Anwar AB, Pham Q-C. Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol. 2017;240:388–396. doi:10.1016/j.jmatprotec.2016.10.015
  • Shen H, Rometsch P, Wu X, et al. Influence of gas flow speed on laser plume attenuation and powder bed particle pickup in laser powder bed fusion. JOM. 2020;72:1039–1051. doi:10.1007/s11837-020-04020-y
  • Ferrar B, Mullen L, Jones E, et al. Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol. 2012;212(2):355–364. doi:10.1016/j.jmatprotec.2011.09.020
  • Guoqing Z, Junxin L, Xiaoyu Z, et al. Optimized design and key performance factors of a gas circulation filtration system in a metal 3D printer. Sci Rep. 2022;12:14267. doi:10.1038/s41598-022-18524-x
  • Pauzon C, Hoppe B, Pichler T, et al. Reduction of incandescent spatter with helium addition to the process gas during laser powder bed fusion of Ti-6Al-4 V. CIRP J Manuf Sci Technol. 2021;35:371–378. doi:10.1016/j.cirpj.2021.07.004
  • Anwar AB, Ibrahim IH, Pham Q-C. Spatter transport by inert gas flow in selective laser melting: A simulation study. Powder Technol. 2019;352:103–116. doi:10.1016/j.powtec.2019.04.044
  • Ficzere AHP. Finite element modeling of additive manufacturing in case of metal parts. Period Polytech Transp Eng. 2022;50(4):330–335. doi:10.3311/PPtr.19242
  • Zhang X, Tuffile C, Cheng B. Computational modeling of the inert gas flow behavior on spatter distribution in selective laser melting. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International, 1362-1372, 2019, Austin, TX, USA; 2019.
  • Lutter-Günther M, Hofmann A, Hauck C, et al. Quantifying powder losses and analyzing powder conditions in order to determine material efficiency in laser beam melting. Appl Mech Mater. 2017; 856:231–237. doi:10.4028/www.scientific.net/amm.856.231