225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal design of an in-situ variable component 3D printhead for SCF/PEEK composite

, , , , , , & show all
Article: e2366517 | Received 24 Apr 2024, Accepted 04 Jun 2024, Published online: 01 Jul 2024

References

  • Liu Z, Meyers MA, Zhang Z, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog Mater Sci. 2017;88:467–498. doi:10.1016/j.pmatsci.2017.04.013
  • Li Y, Feng Z, Hao L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv Mater Technol. 2020;5:1900981. doi:10.1002/admt.201900981
  • Mirzaali MJ, Herranz De La Nava A, Gunashekar D, et al. Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Compos Struct. 2020;237:111867. doi:10.1016/j.compstruct.2020.111867
  • Pelz JS, Ku N, Shoulders WT, et al. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing. Addit Manuf. 2021;37:101647. doi:10.1016/j.addma.2020.101647
  • Hassan I, Selvaganapathy PR. A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing. Addit Manuf. 2022;50:102559. doi:10.1016/j.addma.2021.102559
  • Zhong L, Du J, Xi Y, et al. Multi-material and parameter-controllable stereolithography 3D printing of graded permittivity composites for high voltage insulators. Virtual Phys Prototyp. 2023;18:e2271447. doi:10.1080/17452759.2023.2271447
  • Valizadeh I, Al Aboud A, Dörsam E, et al. Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing. Addit Manuf. 2021;47:102108. doi:10.1016/j.addma.2021.102108
  • Zeng M, Du Y, Jiang Q, et al. High-throughput printing of combinatorial materials from aerosols. Nature. 2023;617:292–298. doi:10.1038/s41586-023-05898-9
  • Justino Netto JM, Idogava HT, Frezzatto Santos LE, et al. Screw-assisted 3D printing with granulated materials: a systematic review. Int J Adv Manuf Technol. 2021;115:2711–2727. doi:10.1007/s00170-021-07365-z
  • Sinha R, Cámara-Torres M, Scopece P, et al. A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat Commun. 2021;12:500. doi:10.1038/s41467-020-20865-y
  • Ober TJ, Foresti D, Lewis JA. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci U.S.A. 2015;112:12293–12298. doi:10.1073/pnas.1509224112
  • Zhou Z, Salaoru I, Morris P, et al. Additive manufacturing of heat-sensitive polymer melt using a pellet-fed material extrusion. Addit Manuf. 2018;24:552–559. doi:10.1016/j.addma.2018.10.040
  • Ren L, Song Z, Liu H, et al. 3D printing of materials with spatially non-linearly varying properties. Mater Des. 2018;156:470–479. doi:10.1016/j.matdes.2018.07.012
  • Wang W, Gao X, Zhang L, et al. Large-scale material extrusion-based additive manufacturing of short carbon fibre-reinforced silicon carbide ceramic matrix composite preforms. Virtual Phys Prototyp. 2023;18:e2245801. doi:10.1080/17452759.2023.2245801
  • Wong J, Altassan A, Rosen DW. Additive manufacturing of fiber-reinforced polymer composites: A technical review and status of design methodologies. Compos Part B: Eng. 2023;255:110603. doi:10.1016/j.compositesb.2023.110603
  • van de Werken N, Tekinalp H, Khanbolouki P, et al. Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf. 2020;31:100962. doi:10.1016/j.addma.2019.100962
  • Lu S, Zhang B, Niu J, et al. Effect of fiber content on mechanical properties of carbon fiber-reinforced polyether-ether-ketone composites prepared using screw extrusion-based online mixing 3D printing. Addit Manuf. 2024;80:103976. doi:10.1016/j.addma.2024.103976
  • Kumar N, Jain PK, Tandon P, et al. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). J Manuf Process. 2018;35:317–326. doi:10.1016/j.jmapro.2018.08.013
  • Mi D, Zhang J, Zhou X, et al. Direct 3D printing of recycled PET/PP granules by shear screw extrusion. Polymers. 2023;15:4620. doi:10.3390/polym15244620
  • Li G, Qu Y, Yang Y, et al. Effect of mechanical combined with electromagnetic stirring on the dispersity of carbon fibers in the aluminum matrix. Sci Rep. 2020;10:8106. doi:10.1038/s41598-020-64983-5
  • Croom BP, Abbott A, Kemp JW, et al. Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Addit Manuf. 2021;37:101701. doi:10.1016/j.addma.2020.101701
  • Kimura K, Nakayama Y, Kajiwara T. Distributive mixing characteristics of a Dulmage-type screw for a single-screw extruder: experimental and numerical evaluation. Chem Eng J Adv. 2021;7:100137. doi:10.1016/j.ceja.2021.100137
  • Wong TH, Manas-Zloczower I. Two-dimensional dynamic study of the distributive mixing in an internal mixer. Int Polym Process. 1994;9:3–10. doi:10.3139/217.940003
  • Yang C, Tian X, Li D, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017;248:1–7. doi:10.1016/j.jmatprotec.2017.04.027
  • Yang HH, Manas-Zloczower I. 3D flow field analysis of a Banbury mixer. Int Polym Process. 1992;7:195–203. doi:10.3139/217.920195
  • Stroock AD, Dertinger SKW, Ajdari A, et al. Chaotic mixer for microchannels. Science. 2002;295:647–651. doi:10.1126/science.1066238
  • Jana SC, Tjahjadi M, Ottino JM. Chaotic mixing of viscous fluids by periodic changes in geometry: baffled cavity flow. AIChE J. 1994;40:1769–1781. doi:10.1002/aic.690401102
  • Sharma R, Kar KK, Das MK, et al. Short carbon fiber-reinforced polycarbonate composites. In: KK Kar, editor. Composite materials: processing, applications, characterizations. Berlin, Heidelberg: Springer; 2017. p. 199–221. doi:10.1007/978-3-662-49514-8_6
  • Rao Y-N, Dai H-L, Dai T, et al. Linkages among fiber content, porosity and local aggregation in fiber-reinforced composites, and their effect on effective properties. J Mater Sci. 2017;52:12486–12505. doi:10.1007/s10853-017-1344-7
  • Fallon JJ, McKnight SH, Bortner MJ. Highly loaded fiber filled polymers for material extrusion: A review of current understanding. Addit Manuf. 2019;30:100810. doi:10.1016/j.addma.2019.100810
  • Carbon-PEEK-Technical-datasheet-ENG-01.pdf. n.d.. cited 2024 May 21 https://plastigen.cl/wp-content/uploads/2024/03/Carbon-PEEK-Technical-datasheet-ENG-01.pdf.
  • Chang B, Gu J, Long Z, et al. Effects of temperature and fiber orientation on the tensile behavior of short carbon fiber reinforced PEEK composites. Polym Compos. 2021;42:597–607. doi:10.1002/pc.25850
  • Rendas P, Figueiredo L, Geraldo M, et al. Improvement of tensile and flexural properties of 3D printed PEEK through the increase of interfacial adhesion. J Manuf Process. 2023;93:260–274. doi:10.1016/j.jmapro.2023.03.024
  • Lu S, Zhang B, Niu J, et al. High-strength carbon fiber-reinforced polyether-ether-ketone composites with longer fiber retention length manufactured via screw extrusion-based 3D printing. Addit Manuf. 2024;86:104200. doi:10.1016/j.addma.2024.104200
  • Ortega JM, Golobic M, Sain JD, et al. Active mixing of disparate inks for multimaterial 3D printing. Adv Mater Technol. 2019;4:1800717. doi:10.1002/admt.201800717
  • Ma Z, Pu Y, Huang Y, et al. Improvement in interface and mechanical properties of CF/poly(ether-imide) and CF/poly(ether-ether-ketone) by aqueous sizing of reactive cationic poly(amide-imide) with catechol pendant groups on CF. Compos Sci Technol. 2022;230:109754. doi:10.1016/j.compscitech.2022.109754
  • Yu X, Song W, Zheng J, et al. Effects of Low-pressure annealing on the performance of 3D printed CF/PEEK composites. Chin J Mech Eng: Addit Manuf Front. 2023;2:100076. doi:10.1016/j.cjmeam.2023.100076
  • Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. Adv Funct Mater. 2020;30:1909089. doi:10.1002/adfm.201909089
  • Cho SY, Ho DH, Jo SB, et al. Direct 4D printing of functionally graded hydrogel networks for biodegradable, untethered, and multimorphic soft robots. IJEM. 2024;6:025002. doi:10.1088/2631-7990/ad1574
  • Saleh B, Jiang J, Fathi R, et al. 30 years of functionally graded materials: An overview of manufacturing methods. Appl Future Challenges, Compos Part B: Eng. 2020;201:108376. doi:10.1016/j.compositesb.2020.108376