212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Residual deformation analysis of laser powder bed fusion-fabricated lattice structures

, , , , &
Article: e2367104 | Received 31 Mar 2024, Accepted 06 Jun 2024, Published online: 08 Jul 2024

References

  • Pham M-S, Liu C, Todd I, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature. 2019;565(7739):305–311. doi:10.1038/s41586-018-0850-3
  • Kim SH, Yeon S-M, Lee JH, et al. Additive manufacturing of a shift block via laser powder bed fusion: the simultaneous utilisation of optimised topology and a lattice structure. Virtual Phys Prototyp. 2020;15(4):460–480. doi:10.1080/17452759.2020.1818917
  • Shi K, Gu D, Liu H, et al. Process-structure multi-objective inverse optimisation for additive manufacturing of lattice structures using a physics-enhanced data-driven method. Virtual Phys Prototyp. 2023;18(1):e2266641.
  • Mahmoud D, Tandel SRS, Yakout M, et al. Enhancement of heat exchanger performance using additive manufacturing of gyroid lattice structures. Int J Adv Manuf Technol. 2023;126(9–10):4021–4036. doi:10.1007/s00170-023-11362-9
  • Ku M-H, Ni K, Lin Q-E, et al. Novel laser powder bed fusion corrax maraging stainless steel lattice with superior specific strength and energy absorption. J Mater Res Technol. 2023;25:5240–5248. doi:10.1016/j.jmrt.2023.07.027
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545):eabg1487.
  • Tan C, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures. Int J Mach Tools Manuf. 2021;167:103764.
  • Jin J, Wu S, Yang L, et al. Ni–Ti multicell interlacing gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion. Int J Mach Tools Manuf. 2024;195:104099.
  • Bici M, Brischetto S, Campana F, et al. Development of a multifunctional panel for aerospace use through SLM additive manufacturing. Procedia CIRP. 2018;67:215–220. doi:10.1016/j.procir.2017.12.202
  • Mantovani S, Campo GA, Giacalone M. Steering column support topology optimization including lattice structure for metal additive manufacturing. Proc Inst Mech Eng C-J Mech Eng Sci. 2020;236(21):10645–10656. doi:10.1177/0954406220947121
  • Qi Y, Zhang H, Zhang W, et al. Heat treatment of Al-Cu-Li-Sc-Zr alloy produced by laser powder bed fusion. Mater Charact. 2023;195:112505.
  • Liu J, Li Z, Lin D, et al. Eutectic high-entropy alloys and their applications in materials processing engineering: A review. J Mater Sci Technol. 2024;189:211–246. doi:10.1016/j.jmst.2023.10.057
  • Lin D, Chen Q, Xi X, et al. Laser powder bed fusion to fabricate high-entropy alloy FeCoCrNiMo0.5 with excellent high-temperature strength and ductility. Mater Sci Eng A. 2024;900:146413.
  • Xiao Z, Zhou J, Qi Y, et al. The effect of support structure on residual stress in laser powder bed fusion of Ti6Al4 V alloy. J Mat Res Technol. 2023;27:7927–7934. doi:10.1016/j.jmrt.2023.11.139
  • Lin D, Xi X, Ma R, et al. Fabrication of a strong and ductile FeCoCrNiMo0.3 high-entropy alloy with a micro-nano precipitate framework via laser powder bed fusion. Compos Part B-Eng. 2023;266:111006.
  • Li X, Chua JW, Yu X, et al. 3D-Printed lattice structures for sound absorption: current progress, mechanisms and models, structural-property relationships, and future outlook. Adv Sci (Weinh). 2024;11(4):e2305232. doi:10.1002/advs.202305232
  • Köhnen P, Haase C, Bültmann J, et al. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Mater Des. 2018;145:205–217. doi:10.1016/j.matdes.2018.02.062
  • Magarò P, Alaimo G, Carraturo M, et al. A novel methodology for the prediction of the stress–strain response of laser powder bed fusion lattice structure based on a multi-scale approach. Mater Sci Eng A. 2023;863. doi:10.1016/j.msea.2022.144526
  • Fu J, Ding J, Qu S, et al. Improved light-weighting potential of SS316L triply periodic minimal surface shell lattices by micro laser powder bed fusion. Mater Des. 2022;222:111018.
  • Çalışkan Cİ, Khan HM, Ural MM. Hybrid material usage in TPMS forms fabricated by additive manufacturing, comparison of mechanical strength of lattices produced with AlSi10Mg and 7050. Mater Today Commun. 2023;36. doi:10.1016/j.mtcomm.2023.106872
  • Rashid R, Masood S, Ruan D, et al. Design optimization and finite element model validation of LPBF-printed lattice-structured beams. Metals-Basel. 2023;13(2):184.
  • Cansizoglu O, Harrysson O, Cormier D, et al. Properties of Ti–6Al–4 V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A. 2008;492(1–2):468–474. doi:10.1016/j.msea.2008.04.002
  • Bhuwal AS, Pang Y, Maskery I, et al. Creep characterization of inconel 718 lattice metamaterials manufactured by laser powder bed fusion. Adv Eng Mater. 2023:2300643.
  • Yang X, Ma W, Gu W, et al. Multi-scale microstructure high-strength titanium alloy lattice structure manufactured via selective laser melting. RSC Adv. 2021;11(37):22734–22743. doi:10.1039/D1RA02355A
  • De Biasi R, Murchio S, Sbettega E, et al. Efficient optimization framework for L-PBF fatigue enhanced Ti6Al4 V lattice component. Mater Des. 2023;230. doi:10.1016/j.matdes.2023.111975
  • Gatto ML, Cerqueni G, Groppo R, et al. Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion. J Mech Behav Biomed Mater. 2023;144. doi:10.1016/j.jmbbm.2023.105989
  • Bregoli C, Fiocchi J, Biffi CA, et al. Additively manufactured medical bone screws: an initial study to investigate the impact of lattice-based voronoi structure on implant primary stability. Rapid Prototyp J. 2023;30(1):60–72.
  • Gao M, He D, Wu X, et al. Design, preparation, and mechanical property investigation of Ti–Ta 3D-auxetic structure by laser powder bed fusion. Adv Eng Mater. 2023;25(16):2300242.
  • Wang Y, Wang L, Liu D, et al. Mechanisms of processing map difference between laser powder bed fusion of Mg solid cubes and lattice structures. Addit Manuf. 2023;76. doi:10.1016/j.addma.2023.103773
  • Liu H, Gu D, Qi J, et al. Dimensional effect and mechanical performance of node-strengthened hybrid lattice structure fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2240306.
  • Mishra AK, Chavan H, Kumar A. Effect of cell size and wall thickness on the compression performance of triply periodic minimal surface based AlSi10Mg lattice structures. Thin-Walled Struct. 2023;193. doi:10.1016/j.tws.2023.111214
  • Günther F, Pilz S, Hirsch F, et al. Experimental and numerical characterization of imperfect additively manufactured lattices based on triply periodic minimal surfaces. Mater Des. 2023;233. doi:10.1016/j.matdes.2023.112197
  • Hussain S, Alagha AN, Haidemenopoulos GN, et al. Microstructural and surface analysis of NiTi TPMS lattice sections fabricated by laser powder bed fusion. J Manuf Process. 2023;102:375–386. doi:10.1016/j.jmapro.2023.07.055
  • Guaglione F, Caprio L, Previtali B, et al. Single point exposure LPBF for the production of biodegradable Zn-alloy lattice structures. Addit Manuf. 2021;48. doi:10.1016/j.addma.2021.102426
  • Noronha J, Qian M, Leary M, et al. Manufacturability of Ti-6Al-4 V hollow-walled lattice struts by laser powder bed fusion. Jom. 2021;73(12):4199–4208. doi:10.1007/s11837-021-04914-5
  • Emanuelli L, Biasi RD, Plessis Ad, et al. Metrological characterization of porosity graded β-Ti21S triply periodic minimal surface cellular structure manufactured by laser powder bed fusion. Int J Bioprinting. 2023;9(4):729.
  • Wu S, Yang L, Chen P, et al. Performance optimization of Si/SiC ceramic triply periodic minimal surface structures via laser powder bed fusion. J Am Ceram Soc. 2023;106(12):7419–7439. doi:10.1111/jace.19397
  • Ding J, Qu S, Zhang L, et al. Geometric deviation and compensation for thin-walled shell lattice structures fabricated by high precision laser powder bed fusion. Addit Manuf. 2022;58. doi:10.1016/j.addma.2022.103061
  • Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: process optimisation, geometrical integrity, and phase transformations. Int J Mach Tools Manuf. 2019;141:19–29. doi:10.1016/j.ijmachtools.2019.04.002
  • Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Prod Eng. 2009;4(1):35–45. doi:10.1007/s11740-009-0192-y
  • Ahmed M, Atta G. Dimensional quality and distortion analysis of thin-walled alloy parts of AlSi10Mg manufactured by selective laser melting. J Manuf Mater Proc. 2019;3(2). doi:10.3390/jmmp3020051
  • Jayanath S, Achuthan A. A computationally efficient hybrid model for simulating the additive manufacturing process of metals. Int J Mech Sci. 2019;160:255–269. doi:10.1016/j.ijmecsci.2019.06.007
  • Liang X, Dong W, Hinnebusch S, et al. Inherent strain homogenization for fast residual deformation simulation of thin-walled lattice support structures built by laser powder bed fusion additive manufacturing. Addit Manuf. 2020;32. doi:10.1016/j.addma.2020.101091
  • Calignano F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater Des. 2014;64:203–213. doi:10.1016/j.matdes.2014.07.043
  • Tian W, Li Q, Wang Q, et al. Additive manufacturing error quantification on stability of composite sandwich plates with lattice-cores through machine learning technique. Compos Struct. 2024;327. doi:10.1016/j.compstruct.2023.117645
  • Wang Y, Chen C, Qi Y, et al. Residual stress reduction and surface quality improvement of dual-laser powder bed fusion. Addit Manuf. 2023;71:103565.
  • Loh LE, Chua CK, Yeong WY, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transfer. 2015;80:288–300. doi:10.1016/j.ijheatmasstransfer.2014.09.014
  • Li YL, Gu DD. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des. 2014;63:856–867. doi:10.1016/j.matdes.2014.07.006
  • Matsumoto M, Shiomi M, Osakada K, et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf. 2002;42(1):61–67. doi:10.1016/S0890-6955(01)00093-1
  • Nickel AH, Barnett DM, Prinz FB. Thermal stresses and deposition patterns in layered manufacturing. Mat Sci Eng a-Struct. 2001;317(1–2):59–64. doi:10.1016/S0921-5093(01)01179-0
  • Parry LA, Ashcroft IA, Wildman RD. Geometrical effects on residual stress in selective laser melting. Addit Manuf. 2019;25:166–175. doi:10.1016/j.addma.2018.09.026
  • Li Z, Xu R, Zhang Z, et al. The influence of scan length on fabricating thin-walled components in selective laser melting. Int J Mach Tools Manuf. 2018;126:1–12. doi:10.1016/j.ijmachtools.2017.11.012
  • Yang YP, Jamshidinia M, Boulware P, et al. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech. 2017;61(5):599–615. doi:10.1007/s00466-017-1528-7
  • Li C, Liu JF, Fang XY, et al. Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manuf. 2017;17:157–168. doi:10.1016/j.addma.2017.08.014
  • Roberts IA, Wang CJ, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf. 2009;49(12–13):916–923. doi:10.1016/j.ijmachtools.2009.07.004
  • Hu YL, Lin X, Li YL, et al. Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition. J Alloys Compd. 2019;800:163–173. doi:10.1016/j.jallcom.2019.05.348
  • An K, Yuan L, Dial L, et al. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Mater Des. 2017;135:122–132. doi:10.1016/j.matdes.2017.09.018
  • Chen C, Yin J, Zhu H, et al. The effect of process parameters on the residual stress of selective laser melted inconel 718 thin-walled part. Rapid Prototyp J. 2019;25(8):1359–1369. doi:10.1108/RPJ-09-2018-0249
  • Hussein A, Hao L, Yan C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des (1980–2015). 2013;52:638–647. doi:10.1016/j.matdes.2013.05.070
  • Chakrabarty J. Applied plasticity. New York: Springer; 2000.
  • Li Y, Zhou K, Tan P, et al. Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci. 2018;136:24–35. doi:10.1016/j.ijmecsci.2017.12.001
  • Yin J, Zhu H, Ke L, et al. A finite element model of thermal evolution in laser micro sintering. Int J Adv Manuf Technol. 2015;83(9–12):1847–1859. doi:10.1007/s00170-015-7609-x
  • Parry L, Ashcroft IA, Wildman RD. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf. 2016;12:1–15. doi:10.1016/j.addma.2016.05.014
  • Yilbas BS, Arif AFM. Material response to thermal loading due to short pulse laser heating. Int J Heat Mass Transfer. 2001;44(20):3787–3798. doi:10.1016/S0017-9310(01)00026-6
  • Li C, Fu CH, Guo YB, et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol. 2016;229:703–712. doi:10.1016/j.jmatprotec.2015.10.022
  • Chen C, Chang S, Zhu J, et al. Residual stress of typical parts in laser powder bed fusion. J Manuf Process. 2020;59:621–628. doi:10.1016/j.jmapro.2020.10.009
  • Changpeng C, Zhu H, Xiao Z, et al. The residual stress distribution of Ti-6Al-4 V thin wall in the selective laser melting. IOP Conf Ser: Mater Sci Eng. 2019;538:012020. doi:10.1088/1757-899X/538/1/012020
  • Chang K, Ma L, Li P, et al. Effect of heat treatment on microstructure and mechanical properties of GH4099 superalloy fabricated by selective laser melting. J Alloys Compd. 2023;934. doi:10.1016/j.jallcom.2022.167813
  • C.f.t.C.A.M. Handbook. Beijing: CHINA AERONAUTICAL MATERIALS HANDBOOK; 2001.
  • Yagi S, Kunii D. Studies on effective thermal conductivities in packed beds. Chem Eng. 1954;18(12):576–585. doi:10.1252/kakoronbunshu1953.18.576
  • Chen C, Yin J, Zhu H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting. Int J Mach Tools Manuf. 2019;145. doi:10.1016/j.ijmachtools.2019.103433
  • Mills KC. Recommended values of thermophysical properties for selected commercial alloys. Cambridge: Woodhead Publishing; 2002.
  • Gu D, He B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput Mater Sci. 2016;117:221–232. doi:10.1016/j.commatsci.2016.01.044
  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106. doi:10.1016/j.pmatsci.2019.100578
  • Qi Y, Zhang H, Zhu J, et al. Mechanical behavior and microstructure evolution of Al-Cu-Mg alloy produced by laser powder bed fusion: effect of heat treatment. Mater Charact. 2020;165:110364.
  • Ahmed N, Barsoum I, Abu Al-Rub RK. Numerical investigation of residual stresses in thin-walled additively manufactured structures from selective laser melting. Heliyon. 2023;9(9):e19385.