179
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance and failure modes of continuous fibre-reinforced energy absorption tubes by cylindrical layered 3D printing

, , , , , , & show all
Article: e2367122 | Received 15 Nov 2023, Accepted 05 Jun 2024, Published online: 08 Jul 2024

References

  • Kim J, Jeong M, Böhm H, et al. Experimental investigation into static and dynamic axial crush of composite tubes of glass-fiber mat/PA6 laminates. Compos Part B Eng. 2020;181:107590. doi:10.1016/j.compositesb.2019.107590
  • Zia AA, Tian X, Liu T, et al. Mechanical and energy absorption behaviors of 3D printed continuous carbon/Kevlar hybrid thread reinforced PLA composites. Compos Struct. 2023;303:116386. doi:10.1016/j.compstruct.2022.116386
  • Wong J, Altassan A, Rosen DW. Additive manufacturing of fiber-reinforced polymer composites: a technical review and status of design methodologies. Compos Part B Eng. 2023;255:110603. doi:10.1016/j.compositesb.2023.110603
  • Ryzińska G, David M, Prusty G, et al. Effect of fibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushing. Compos Struct. 2019;227:111292. doi:10.1016/j.compstruct.2019.111292
  • Ye H, Ma J, Zhou X, et al. Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns. Compos Struct. 2019;221:110904. doi:10.1016/j.compstruct.2019.110904
  • Xie J, Waas AM. Predictions of delamination growth for quasi-static loading of composite laminates. J Appl Mech Trans ASME. 2015;82(8):081004. doi:10.1115/1.4030684
  • Isaac CW, Ezekwem C. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Compos Struct. 2021;257:113081. doi:10.1016/j.compstruct.2020.113081
  • Abdullah NAZ, Sani MSM, Salwani MS, et al. A review on crashworthiness studies of crash box structure. Thin Walled Struct. 2020;153:106795. doi:10.1016/j.tws.2020.106795
  • Qing X, Liao Y, Wang Y, et al. Machine learning based quantitative damage monitoring of composite structure. Int J Smart Nano Mater. 2022;13(2):167–202. doi:10.1080/19475411.2022.2054878
  • Supian ABM, Sapuan SM, Zuhri MYM, et al. Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load. J Mater Res Technol. 2021;10:1–14. doi:10.1016/j.jmrt.2020.11.103
  • Hu D, Zhang C, Ma X, et al. Effect of fiber orientation on energy absorption characteristics of glass cloth/epoxy composite tubes under axial quasi-static and impact crushing condition. Compos Part A Appl Sci Manuf. 2016;90:489–501. doi:10.1016/j.compositesa.2016.08.017
  • Wang Y, Feng J, Wu J, et al. Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions. Compos Struct. 2016;153:356–368. doi:10.1016/j.compstruct.2016.06.033
  • Alia RA, Al-Ali O, Kumar S, et al. The energy-absorbing characteristics of carbon fiber-reinforced epoxy honeycomb structures. J Compos Mater. 2018;53(9):1145–1157. doi:10.1177/0021998318796161
  • Bakar MS A, Salit MS, Mohamad Yusoff MZ, et al. The crashworthiness performance of stacking sequence on filament wound hybrid composite energy absorption tube subjected to quasi-static compression load. J Mater Res Technol. 2020;9(1):654–666. doi:10.1016/j.jmrt.2019.11.006
  • Xu J, Ma Y, Zhang Q, et al. Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Compos Struct. 2016;139:130–140. doi:10.1016/j.compstruct.2015.11.053
  • Wang B, Wu L, Ma L, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core. Mater Des (1980–2015). 2010;31(5):2659–2663. doi:10.1016/j.matdes.2009.11.061
  • Almeida JHS, St-Pierre L, Wang Z, et al. Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Compos Part B Eng. 2021;225:109224. doi:10.1016/j.compositesb.2021.109224
  • Zhou J, Guan Z, Cantwell WJ. The energy-absorbing behaviour of composite tube-reinforced foams. Compos Part B Eng. 2018;139:227–237. doi:10.1016/j.compositesb.2017.11.066
  • Zhu G, Wang Z, Huo X, et al. Experimental and numerical investigation into axial compressive behaviour of thin-walled structures filled with foams and composite skeleton. Int J Mech Sci. 2017;122:104–119. doi:10.1016/j.ijmecsci.2016.12.019
  • Peng C, Tran P, Mouritz AP. Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Compos Struct. 2022;300:116167. doi:10.1016/j.compstruct.2022.116167
  • Quan C, Han B, Hou Z, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures. Compos Part B Eng. 2020;187:107858. doi:10.1016/j.compositesb.2020.107858
  • Wang B, Ming Y, Zhou J, et al. Fabrication of triangular corrugated structure using 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Polym Test. 2022;106:107469. doi:10.1016/j.polymertesting.2021.107469
  • Tian X, Todoroki A, Liu T, et al. 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chin J Mech Eng Addit Manuf Front. 2022;1(1):100016. doi:10.1016/j.cjmeam.2022.100016
  • Yin G, He Q, Zhou X, et al. Printing ionic polymer metal composite actuators by fused deposition modeling technology. Int J Smart Nano Mater. 2021;12(2):218–231. doi:10.1080/19475411.2021.1914766
  • Alhijaily A, Kilic ZM, Bartolo ANP. Teams of robots in additive manufacturing: a review. Virtual Phys Prototyp. 2023;18(1):e2162929. doi:10.1080/17452759.2022.2162929
  • Uşun A, Gümrük R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation. Addit Manuf. 2021;46:102112. doi:10.1016/j.addma.2021.102112
  • Zeng C, Liu L, Bian W, et al. Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects. Addit Manuf. 2021;38:101842. doi:10.1016/j.addma.2021.101842
  • Zhang P, Sun S, Duan J, et al. Line width prediction and mechanical properties of 3D printed continuous fiber reinforced polypropylene composites. Addit Manuf. 2023;61:103372. doi:10.1016/j.addma.2022.103372
  • Liu T, Yuan S, Wang Y, et al. Stress-driven infill mapping for 3D-printed continuous fiber composite with tunable infill density and morphology. Addit Manuf. 2023;62:103374. doi:10.1016/j.addma.2022.103374
  • Saeed K, McIlhagger A, Harkin-Jones E, et al. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Compos Struct. 2022;282:115033. doi:10.1016/j.compstruct.2021.115033
  • Huang Y, Tian X, Wu L, et al. Progressive concurrent topological optimization with variable fiber orientation and content for 3D printed continuous fiber reinforced polymer composites. Compos Part B Eng. 2023;255:110602. doi:10.1016/j.compositesb.2023.110602
  • Zhang G, Wang Y, Chen Z, et al. Robot-assisted conformal additive manufacturing for continuous fibre-reinforced grid-stiffened shell structures. Virtual Phys Prototyp. 2023;18(1):e2203695. doi:10.1080/17452759.2023.2203695
  • Tian X, Liu T, Yang C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A Appl Sci Manuf. 2016;88:198–205. doi:10.1016/j.compositesa.2016.05.032
  • Bettini P, Alitta G, Sala G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic. J Mater Eng Perform. 2017;26(2):843–848. doi:10.1007/s11665-016-2459-8
  • Shi K, Yan Y, Mei H, et al. 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength. Addit Manuf. 2021;39:101882. doi:10.1016/j.addma.2021.101882
  • Kong X, Luo J, Luo Q, et al. Experimental study on interface failure behavior of 3D printed continuous fiber reinforced composites. Addit Manuf. 2022;59:103077. doi:10.1016/j.addma.2022.103077
  • Morales U, Esnaola A, Iragi M, et al. The effect of cross-section geometry on crushing behaviour of 3D printed continuous carbon fibre reinforced polyamide profiles. Compos Struct. 2021;274:114337. doi:10.1016/j.compstruct.2021.114337
  • Isaac CW, Sokołowski A, Duddeck F, et al. Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loading. Virtual Phys Prototyp. 2023;18(1):e2273296. doi:10.1080/17452759.2023.2273296
  • Wang Y, Zhang G, Ren H, et al. Fabrication strategy for joints in 3D printed continuous fiber reinforced composite lattice structures. Compos Commun. 2022;30:101080. doi:10.1016/j.coco.2022.101080
  • Goh GD, Neo SJC, Dikshit V, et al. Quasi-static indentation and sound-absorbing properties of 3D printed sandwich core panels. J Sandw Struct Mater. 2021;24(2):1206–1225. doi:10.1177/10996362211037015
  • Song S, Xiong C, Yin J, et al. Mechanical property of all-composite diamond honeycomb sandwich structure based on interlocking technology: experimental tests and numerical analysis. Mech Adv Mater Struct. 2024;31(5):973–989. doi:10.1080/15376494.2022.2128123
  • Ahmed AA, Susmel L. Additively manufactured PLA under static loading: strength/cracking behaviour vs. deposition angle. Procedia Struct Integr. 2017;3:498–507. doi:10.1016/j.prostr.2017.04.060
  • Liu T, Tian X, Zhang M, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites. Compos Part A Appl Sci Manuf. 2018;114:368–376. doi:10.1016/j.compositesa.2018.09.001
  • Hanssen AG, Langseth M, Hopperstad OS. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int J Impact Eng. 2000;24(5):475–507. doi:10.1016/S0734-743X(99)00170-0
  • Mamalis AG, Manolakos DE, Baldoukas AK, et al. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders. Thin Walled Struct. 1991;12(1):17–34. doi:10.1016/0263-8231(91)90024-D
  • Toksoy AK, Güden M. The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes. Thin Walled Struct. 2005;43(2):333–350. doi:10.1016/j.tws.2004.07.007