341
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Leveraging clay formwork 3D printing for reinforced concrete construction

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2367735 | Received 13 Feb 2024, Accepted 05 Jun 2024, Published online: 10 Jul 2024

References

  • United Nations Environment Programme. Global status report for buildings and construction–towards a zero-emissions, efficient and resilient buildings and construction sector. Technical Report, Nairobi, 2021. Available at https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction.
  • Huang B, Gao X, Xu X, et al. A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth. 2020;3(5):564–573. doi: 10.1016/j.oneear.2020.10.010
  • Andrew RM. Global CO2 emissions from cement production, 1928–2017. Earth Syst Sci Data. 2018;10(4):2213–2239. doi: 10.5194/essd-10-2213-2018
  • Huang Z, Wang J, Bing L, et al. Global carbon uptake of cement carbonation accounts 1930–2021. Earth Syst Sci Data Discuss. 2023;2023:1–28. doi: 10.5194/essd-15-4947-2023
  • Schipper H, Grünewald S. Efficient material use through smart flexible formwork method. In: International Symposium on Environmentally Friendly Concrete (ECO-Crete), Reykjavik, Iceland. 2014. https://repository.tudelft.nl/islandora/object/uuid:5f767d7f-6ad1-4e37-9efc-1817e9561274?collection=research
  • de Soto BG, Agustí-Juan I, Hunhevicz J, et al. Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom Constr. 2018;92:297–311. doi: 10.1016/j.autcon.2018.04.004
  • Cheng B, Huang J, Lu K, et al. BIM-enabled life cycle assessment of concrete formwork waste reduction through prefabrication. Sustainable Energy Technol Assess. 2022;53:102449. doi: 10.1016/j.seta.2022.102449
  • United Nations Environment Programme. Global status report for buildings and construction–towards a zero-emissions, efficient and resilient buildings and construction sector. Technical Report, Nairobi, 2022. Available at https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction.
  • Flatt RJ, Wangler T. On sustainability and digital fabrication with concrete. Cement Concrete Res. 2022;158:106837. doi: 10.1016/j.cemconres.2022.106837
  • Lloret-Fritschi E, Wangler T, Gebhard L, et al. From smart dynamic casting to a growing family of digital casting systems. Cement Concr Res. 2020;134:106071. doi: 10.1016/j.cemconres.2020.106071
  • Jipa A, Dillenburger B. 3D printed formwork for concrete: state-of-the-art, opportunities, challenges, and applications. 3D Print Addit Manuf. 2022;9(2):84–107. doi: 10.1089/3dp.2021.0024
  • Anton A, Reiter L, Wangler T, et al. A 3D concrete printing prefabrication platform for bespoke columns. Autom Constr. 2021;122:103467. doi: 10.1016/j.autcon.2020.103467
  • Xiao J, Ji G, Zhang Y, et al. Large-scale 3D printing concrete technology: current status and future opportunities. Cement Concr Composites. 2021;122:104115. doi: 10.1016/j.cemconcomp.2021.104115
  • XtreeE [accessed 2024 Apr 11]. Available at https://xtreee.com.
  • Apis Cor. [accessed 2024 Apr 11]. Available at https://www.apis-cor.com.
  • CONSTRUCTIONS 3D [accessed 2024 Apr 11]. Available at https://www.constructions-3d.com/.
  • ICON [accessed 2024 Apr 11]. Available at https://www.iconbuild.com/.
  • Naboni R, Breseghello L. Fused deposition modelling formworks for complex concrete constructions. In: Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics (SIGraDi), São Carlos, Brazil. CumInCAD; 2018. p. 700–707. doi: 10.5151/sigradi2018-1648
  • Jipa A, Giacomarra F, Giesecke R, et al. 3D-printed formwork for bespoke concrete stairs: from computational design to digital fabrication. In: Proceedings of the 3rd Annual ACM Symposium on Computational Fabrication, Pittsburgh. Association for Computing Machinery; 2019. p. 1–12. doi: 10.1145/3328939.3329003
  • Burger J, Lloret-Fritschi E, Scotto F, et al. Eggshell: ultra-thin three-dimensional printed formwork for concrete structures. 3D Print Addit Manuf. 2020;7(2):48–59. doi: 10.1089/3dp.2019.0197
  • Furet B, Poullain P, Garnier S. 3D printing for construction based on a complex wall of polymer-foam and concrete. Addit Manuf. 2019;28:58–64. doi: 10.1016/j.addma.2019.04.002
  • Bedarf P, Szabo A, Zanini M, et al. Robotic 3D printing of geopolymer foam for lightweight and insulating building elements. 3D Print Addit Manuf. 2023;11:1–9. doi: 10.1089/3dp.2023.0183
  • Burger J, Lloret-Fritschi E, Akermann M, et al. Circular formwork: recycling of 3D printed thermoplastic formwork for concrete. Technology— Architecture+ Design. 2023;7(2):204–215. doi: 10.1080/24751448.2023.2245724
  • Menna C, Mata-Falcón J, Bos FP, et al. Opportunities and challenges for structural engineering of digitally fabricated concrete. Cement Concrete Res. 2020;133:106079. doi: 10.1016/j.cemconres.2020.106079
  • Kloft H, Empelmann M, Hack N, et al. Reinforcement strategies for 3D-concrete-printing. Civil Eng Des. 2020;2(4):131–139. doi: 10.1002/cend.202000022
  • Mechtcherine V, Buswell R, Kloft H, et al. Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement Concr Composites. 2021;119:103964. doi: 10.1016/j.cemconcomp.2021.103964
  • Vantyghem G, De Corte W, Shakour E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr. 2020;112:103084. doi: 10.1016/j.autcon.2020.103084
  • Raza S, Triantafyllidis Z, Anton A, et al. Seismic performance of Fe-SMA prestressed segmental bridge columns with 3D printed permanent concrete formwork. Eng Struct. 2024;302:117423. doi: 10.1016/j.engstruct.2023.117423
  • Gebhard L, Burger J, Mata-Falcón J, et al. Towards efficient concrete structures with ultra-thin 3D printed formwork: exploring reinforcement strategies and optimisation. Virtual Phys Prototyp. 2022;17(3):599–616. doi: 10.1080/17452759.2022.2041873
  • Huber T, Burger J, Mata-Falcón J, et al. Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork. Struct Concr. 2023;24(2):1932–1955. doi: 10.1002/suco.202200633
  • Bischof P, Mata-Falcón J, Kaufmann W. Fostering innovative and sustainable mass-market construction using digital fabrication with concrete. Cement Concrete Res. 2022;161:106948. doi: 10.1016/j.cemconres.2022.106948
  • Khoshnevis B, Bukkapatnam S, Kwon H, et al. Experimental investigation of contour crafting using ceramics materials. Rapid Prototyp J. 2001;7(1):32–42. doi: 10.1108/13552540110365144
  • Rael R, San Fratello V. Clay bodies: crafting the future with 3D printing. Archit Des. 2017;87(6):92–97. doi: 10.1002/ad.2243
  • Revelo CF, Colorado HA. 3D printing of kaolinite clay ceramics using the direct ink writing (DIW) technique. Ceram Int. 2018;44(5):5673–5682. doi: 10.1016/j.ceramint.2017.12.219
  • Chen Y, Jansen K, Zhang H, et al. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: an experimental and numerical study. Constr Build Mater. 2020;262:120094. doi: 10.1016/j.conbuildmat.2020.120094
  • Chan SS, Pennings RM, Edwards L, et al. 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability. Addit Manuf. 2020;35:101335. doi: 10.1016/j.addma.2020.101335
  • Gomaa M, Jabi W, Soebarto V, et al. Digital manufacturing for earth construction: a critical review. J Clean Prod. 2022;338:130630. doi: 10.1016/j.jclepro.2022.130630
  • Leschok M, Cheibas I, Piccioni V, et al. 3D printing facades: design, fabrication, and assessment methods. Autom Constr. 2023;152:104918. doi: 10.1016/j.autcon.2023.104918
  • Wang S, Dritsas S, Morel P, et al. Clay robotics: a hybrid 3D printing casting process. In: Challenges for technology innovation: an agenda for the future. Lisbon, Portugal: CRC Press; 2017. p. 83–88. doi: 10.1201/9781315198101-16
  • Wang S, Xuereb Conti Z, Raspall F. Optimization of clay mould for concrete casting using design of experiments. In: Proceedings of the 24th Annual Conference for Computer-Aided Architectural Design Research in Asia (CAADRIA) Conference, Wellington, New Zealand. CumInCAD; 2019. p. 283–292. doi: 10.52842/conf.caadria.2019.2.283
  • Alonso Madrid J, Sotorrío Ortega G, Gorostiza Carabaño J, et al. 3D claying: 3D printing and recycling clay. Crystals. 2023;13(3):375. doi: 10.3390/cryst13030375
  • Hunt E, Arthur H. Hexcrete: Modular and recyclable paper clay formwork. In: Digital Design Reconsidered, Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Graz, Austria, Vol. 13, CumInCAD; 2023. p. 375. doi: 10.52842/conf.ecaade.2023.1.429
  • Bruce M, Clune G, Xie R, et al. Cocoon: 3D printed clay formwork for concrete casting. In: Realignments: Toward Critical Computation, Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA), CumInCAD; 2021. p. 400–409. doi: 10.52842/conf.acadia.2021.400
  • Mozaffari S, Bruce M, Clune G, et al. Digital design and fabrication of clay formwork for concrete casting. Autom Constr. 2023;154:104969. doi: 10.1016/j.autcon.2023.104969
  • Mozaffari S, Akbarzadeh M, Vogel T. Graphic statics in a continuum: strut-and-tie models for reinforced concrete. Comput Struct. 2020;240:106335. doi: 10.1016/j.compstruc.2020.106335
  • KUKA [accessed 2024 Apr 11]. Available at https://www.kuka.com/.
  • LMI Technologies. Gocator 2300 series [accessed 2024 Apr 11]. Available at https://lmi3d.com/series/gocator-2300-series/.
  • Rovin Ceramics [accessed 2024 Apr 11]. Available at https://rovinceramics.com/.
  • Materials Testing Consultants [accessed 2024 Apr 11]. Available at https://www.mtc-test.com/.
  • ASTM D2166. Standard test method for unconfined compressive strength of cohesive soil [accessed 2024 Apr 11]. Available at https://www.astm.org/d2166-06.html.
  • ASTM D4318. Standard test methods for liquid limit, plastic limit, and plasticity index of soils [accessed 2024 Apr 11]. Available at https://www.astm.org/d4318-17e01.html.
  • Mata-Falcón J. Estudio del comportamiento en servicio y rotura de los apoyos a media madera [dissertation]. Universitat Politécnica Valéncia; 2015. Available at doi: 10.4995/Thesis/10251/53451
  • Lloret E, Shahab AR, Linus M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Computer-Aided Des. 2015;60:40–49. doi: 10.1016/j.cad.2014.02.011
  • HiPer Fibers [accessed 2024 Apr 11]. Available at https://hiperfibersolutions.com.
  • Adel A, Ruan D, McGee W, et al. Feedback-driven adaptive multi-robot timber construction. Autom Constr. 2024;164:105444. doi: 10.1016/j.autcon.2024.105444
  • Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992;14:239–256. doi: 10.1109/34.121791
  • NDI. Optotrak certus [accessed 2024 Apr 11]. Available at https://www.ndigital.com/products/legacy-products.
  • American Concrete Institute. Building code requirements for structural concrete (ACI 318-14), 2014. https://www.concrete.org/store/productdetail.aspx?ItemID=318U14&Language=English&Units=US_Units
  • Kaufmann W. Advanced structural concrete - steel fibre reinforced concrete (lecture notes) [accessed 2024 Apr 11]. Available at https://concrete.ethz.ch/asc/steel-fibre-reinforced-concrete/.
  • Pfyl T. Tragverhalten von stahlfaserbeton [dissertation] ETH Zurich; 2003. Available at doi: 10.3929/ethz-a-004501155
  • Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017;83:212–221. doi: 10.1016/j.autcon.2017.08.019
  • Marchment T, Sanjayan J, Xia M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Mater Des. 2019;169:107684. doi: 10.1016/j.matdes.2019.107684
  • Gomaa M, Jabi W, Reyes AV, et al. 3D printing system for earth-based construction: case study of cob. Autom Constr. 2021;124:103577. doi: 10.1016/j.autcon.2021.103577
  • Kontovourkis O, Tryfonos G. Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design. Autom Constr. 2020;110:103005. doi: 10.1016/j.autcon.2019.103005
  • Alhijaily A, Kilic ZM, Bartolo AP. Teams of robots in additive manufacturing: a review. Virtual Phys Prototyp. 2023;18(1):e2162929. doi: 10.1080/17452759.2022.2162929
  • Hack N, Dörfler K, Walzer AN, et al. Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: A real scale architectural demonstrator. Autom Constr. 2020;115:103197. doi: 10.1016/j.autcon.2020.103197
  • Mozaffari S. Computational strut-and-tie modeling: Explorations of algebraic graphic statics and layout optimization [dissertation]. ETH Zurich; 2021. Available at doi: 10.3929/ethz-b-000531631
  • Maitenaz S, Mesnil R, Feraille A, et al. Materialising structural optimisation of reinforced concrete beams through digital fabrication. In: Structures, Vol. 59. 2024; p. 105644. doi: 10.1016/j.istruc.2023.105644
  • Carrillo FJ, Bourg IC. Capillary and viscous fracturing during drainage in porous media. Phys Rev E. 2021;103(6):063106. doi: 10.1103/PhysRevE.103.063106
  • Carrillo FJ, Bourg IC. Modeling multiphase flow within and around deformable porous materials: A Darcy-Brinkman-Biot approach. Water Resour Res. 2021;57(2):e2020WR028734. doi: 10.1029/2020WR028734
  • Hammond G, Jones C. Embodied carbon, the inventory of carbon and energy (ICE). Technical Report, The Building Services Research and Information Association, 2011. Available at https://greenbuildingencyclopaedia.uk/wp-content/uploads/2014/07/Full-BSRIA-ICE-guide.pdf.
  • Kumar R, Sharma H, Saran C, et al. A comparative study on the life cycle assessment of a 3D printed product with PLA, ABS & PETG materials. Procedia CIRP. 2022;107:15–20. doi: 10.1016/j.procir.2022.04.003
  • Han Y, Yang Z, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod. 2021;278:123884. doi: 10.1016/j.jclepro.2020.123884
  • Calusem. Refcon® MG [accessed 2024 Apr 11]. Available at https://www.calucem.com/products/refcon-mg/.
  • Fishtone Studio Inc. Fishstone delay set retarder admixture [accessed 2024 Apr 11]. Available at https://concretecountertopsupply.com/fishstone-delay-set-retarder-admixture-5-lb/.