221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-physics information-integrated neural network for fatigue life prediction of additively manufactured Hastelloy X superalloy

, , &
Article: e2368652 | Received 29 Apr 2024, Accepted 11 Jun 2024, Published online: 07 Jul 2024

References

  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. doi:10.1016/j.matdes.2021.110008
  • Abderrafai Y, Diouf-Lewis A, Sosa-Rey F, et al. Additive manufacturing and characterization of high temperature thermoplastic blends for potential aerospace applications. Compos Sci Technol. 2023;231:109839. doi:10.1016/j.compscitech.2022.109839
  • Dzogbewu TC, de Beer DJ. Additive manufacturing of selected ecofriendly energy devices. Virtual Phys Prototyp. 2023;18:e2276245. doi:10.1080/17452759.17452023.12276245
  • Macallister N, Becker TH. Fatigue life estimation of additively manufactured Ti-6Al-4V: sensitivity, scatter and defect description in damage-tolerant models. Acta Mater. 2022;237:118189. doi:10.1016/j.actamat.2022.118189
  • Zhan Z, He X, Tang D, et al. Recent developments and future trends in fatigue life assessment of additively manufactured metals with particular emphasis on machine learning modeling. Fatigue & Fract Eng Mater Struct. 2023;46:4425–4464. doi:10.1111/ffe.14152
  • Lei L, Li B, Wang H, et al. High-temperature high-cycle fatigue performance and machine learning-based fatigue life prediction of additively manufactured hastelloy X. Int J Fatigue. 2024;178:108012. doi:10.1016/j.ijfatigue.2023.108012
  • Peng X, Wu S, Qian W, et al. The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci. 2022;221:107185. doi:10.1016/j.ijmecsci.2022.107185
  • Sai NJ, Rathore P, Chauhan A. Machine learning-based predictions of fatigue life for multi-principal element alloys. Scr Mater. 2023;226:115214. doi:10.1016/j.scriptamat.2022.115214
  • Dang L, He X, Tang D, et al. Pore-induced fatigue failure: a prior progressive fatigue life prediction framework of laser-directed energy deposition Ti-6Al-4 V based on machine learning. Theor Appl Fract Mech. 2024;130:104276. doi:10.1016/j.tafmec.2024.104276
  • Cutolo A, Lammens N, Vanden Boer K, et al. Fatigue life prediction of a L-PBF component in Ti-6Al-4 V using sample data, FE-based simulations and machine learning. Int J Fatigue. 2023;167:107276. doi:10.1016/j.ijfatigue.2022.107276
  • Jia Y, Fu R, Ling C, et al. Fatigue life prediction based on a deep learning method for Ti-6Al-4 V fabricated by laser powder bed fusion up to very-high-cycle fatigue regime. Int J Fatigue. 2023;172:107645. doi:10.1016/j.ijfatigue.2023.107645
  • Centola A, Ciampaglia A, Tridello A, et al. Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4 V components. Fatigue & Fracture Eng Mater Struct. 2023;46:4350–4370. doi:10.1111/ffe.14125
  • Xie RK, Zhong XC, Qin SH, et al. Predicting multiaxial fatigue life of FGH96 superalloy based on machine learning models by considering failure process and loading paths. Int J Fatigue. 2023;175:107730. doi:10.1016/j.ijfatigue.2023.107730
  • Wang H, Li B, Gong J, et al. Machine learning-based fatigue life prediction of metal materials: perspectives of physics-informed and data-driven hybrid methods. Eng Fract Mech. 2023;284:109242. doi:10.1016/j.engfracmech.2023.109242
  • Zhu SP, Wang LY, Luo CQ, et al. Physics-informed machine learning and its structural integrity applications: state of the art. Philos Trans Royal Soc A: Math. Phys Eng Sci. 2023;381(2260):1–15.
  • Zhou C, Wang H, Hou S, et al. A hybrid physics-based and data-driven method for gear contact fatigue life prediction. Int J Fatigue. 2023;175:107763. doi:10.1016/j.ijfatigue.2023.107763
  • He G, Zhao Y, Yan C. A physics-informed generative adversarial network framework for multiaxial fatigue life prediction. Fatigue & Fracture Eng Mater Struct. 2023;46:4036–4052. doi:10.1111/ffe.14123
  • Chen D, Li Y, Liu K, et al. A physics-informed neural network approach to fatigue life prediction using small quantity of samples. Int J Fatigue. 2023;166:107270. doi:10.1016/j.ijfatigue.2022.107270
  • Niu XP, He C, Zhu SP, et al. Defect sensitivity and fatigue design: deterministic and probabilistic aspects in additively manufactured metallic materials. Prog Mater Sci. 2024;144:101290. doi:10.1016/j.pmatsci.2024.101290
  • Avoledo E, Tognan A, Salvati E. Quantification of uncertainty in a defect-based physics-informed neural network for fatigue evaluation and insights on influencing factors. Eng Fract Mech. 2023;292:109595. doi:10.1016/j.engfracmech.2023.109595
  • Wang LY, Zhu SP, Luo CQ, et al. Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials. Philos Trans Royal Soc A: Math. Phys Eng Sci. 2023;381(2260):1–23.
  • Tognan A, Patanè A, Laurenti L, et al. A Bayesian defect-based physics-guided neural network model for probabilistic fatigue endurance limit evaluation. Comput Methods Appl Mech Eng. 2024;418(Part A):116521. doi:10.1016/j.cma.2023.116521
  • Wang L, Zhu SP, Luo C, et al. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. Int J Fatigue. 2023;172:107658. doi:10.1016/j.ijfatigue.2023.107658
  • Salvati E, Tognan A, Laurenti L, et al. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing. Mater Des. 2022;222(0):111089. doi:10.1016/j.matdes.2022.111089
  • Fan JL, Zhu G, Zhu M, et al. A data-physics integrated approach to life prediction in very high cycle fatigue regime. Int J Fatigue. 2023;176:107917. doi:10.1016/j.ijfatigue.2023.107917
  • He G, Zhao Y, Yan C. MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction. Eur J Mech A Solids. 2023;98:104889. doi:10.1016/j.euromechsol.2022.104889
  • Acharya R, Caputo AN, Neu RW. Predicting creep-fatigue and thermomechanical fatigue life of Ni-base superalloys using a probabilistic physics-guided neural network. Fatigue & Fracture Eng Mater Struct. 2023;46:1554–1571. doi:10.1111/ffe.13948
  • Zhou T, Jiang S, Han T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network. Int J Fatigue. 2023;166:107234. doi:10.1016/j.ijfatigue.2022.107234
  • Shi K, Gu D, Liu H, et al. Process-structure multi-objective inverse optimisation for additive manufacturing of lattice structures using a physics-enhanced data-driven method. Virtual Phys Prototyp. 2023;18(1):e2266641. doi:10.1080/17452759.2023.2266641
  • Wang H, Li B, Lei L, et al. Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network. Reliab Eng Syst Saf. 2024;243:109852. doi:10.1016/j.ress.2023.109852
  • Kapusuzoglu B, Mahadevan S. Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data. Reliab Eng Syst Saf. 2021;214:107712. doi:10.1016/j.ress.2021.107712
  • Du L, Qian G, Zheng L, et al. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4 V. Fatigue & Fracture Eng Mater Struct. 2021;44:240–256. doi:10.1111/ffe.13361
  • Wang H, Li B, Xuan F. Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features. Int J Fatigue. 2022;164:107147. doi:10.1016/j.ijfatigue.2022.107147
  • Zhan Z, Li H, Lam KY. Development of a novel fatigue damage model with AM effects for life prediction of commonly-used alloys in aerospace. Int J Mech Sci. 2019;155:110–124. doi:10.1016/j.ijmecsci.2019.02.032
  • Zhao W, Fu Z, Fan T, et al. Ontology construction and mapping of multi-source heterogeneous data based on hybrid neural network and autoencoder. Neural Comput Appl. 2023;35:25131–25141. doi:10.1007/s00521-023-08373-8
  • Jia X, Guo B. Reliability analysis for complex system with multi-source data integration and multi-level data transmission. Reliab Eng Syst Saf. 2022;217:108050. doi:10.1016/j.ress.2021.108050