200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insight into the cracking mechanism of super-elastic NiTi alloy fabricated by laser powder bed fusion

, , , , , , , , & show all
Article: e2368654 | Received 31 Mar 2024, Accepted 08 Jun 2024, Published online: 07 Jul 2024

References

  • Wang X, Yu J, Liu J, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf. 2020;36:101545. doi:10.1016/j.addma.2020.101545
  • Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018;144:552–560. doi:10.1016/j.actamat.2017.10.072
  • Dadbakhsh S, Speirs M, Van Humbeeck J, et al. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull. 2016;41(10):765–774. doi:10.1557/mrs.2016.209
  • Lu HZ, Ma HW, Cai WS, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting. J Mater Process Technol. 2022;303:117546. doi:10.1016/j.jmatprotec.2022.117546
  • Frenzel J, Wieczorek A, Opahle I, et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 2015;90:213–231. doi:10.1016/j.actamat.2015.02.029
  • Pelton AR, Russell SM, DiCello J. The physical metallurgy of nitinol for medical applications. JOM. 2003;55(5):33–37. doi:10.1007/s11837-003-0243-3
  • Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel–titanium. Mater Charact. 2014;94:189–202. doi:10.1016/j.matchar.2014.05.017
  • Wang X, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect. Scr Mater. 2018;146:246–250. doi:10.1016/j.scriptamat.2017.11.047
  • Zeng Z, Cong BQ, Oliveira JP, et al. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and Mechanical Properties. Addit Manuf. 2020;32:101051. doi:10.1016/j.addma.2020.101051
  • Lu HZ, Ma HW, Yang Y, et al. Tailoring phase transformation behavior, microstructure, and superelasticity of NiTi shape memory alloys by specific change of laser power in selective laser melting. Mater Sci Eng A. 2023;864:144576. doi:10.1016/j.msea.2022.144576
  • Qu S, Wang L, Ding J, et al. Superelastic NiTi functional components by high-precision laser powder bed fusion process: the critical roles of energy density and minimal feature size. Micromach-Basel. 2023;14(7). doi:10.3390/mi14071436
  • Zhan J, Wu J, Ma R, et al. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: toward editable 4D printing of NiTi alloys. J Manuf Process. 2023;101:1468–1481. doi:10.1016/j.jmapro.2023.07.009
  • Zhang C, Xue L, Atli KC, et al. On the fabrication of defect-free nickel-rich nickel–titanium parts using laser powder bed fusion. J Manuf Sci Eng. 2022;144(9). doi:10.1115/1.4054935
  • Xue L, Atli KC, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater. 2022;229:117781. doi:10.1016/j.actamat.2022.117781
  • Mirkoohi E, Dobbs JR, Liang SY. Analytical mechanics modeling of in-process thermal stress distribution in metal additive manufacturing. J Manuf Process. 2020;58:41–54. doi:10.1016/j.jmapro.2020.08.009
  • Zhou Z, Huang L, Shang Y, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Mater Des. 2018;160:1238–1249. doi:10.1016/j.matdes.2018.10.042
  • Hu J, Hu Y, Lan C, et al. Cracking mechanism and control of Hastelloy X prepared by laser powder bed fusion. J Mater Res Technol. 2022;21:3526–3547. doi:10.1016/j.jmrt.2022.10.164
  • Lu X, Zhang W, Chiumenti M, et al. Crack-free laser powder bed fusion by substrate design. Addit Manuf. 2022;59:103149. doi:10.1016/j.addma.2022.103149
  • Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–307. doi:10.1016/j.ijfatigue.2012.11.011
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15(2):299–305. doi:10.1007/BF02667333
  • Fu J, Hu Z, Song X, et al. Micro selective laser melting of NiTi shape memory alloy: defects, microstructures and thermal/mechanical properties. Opt Laser Technol. 2020;131:106374. doi:10.1016/j.optlastec.2020.106374
  • Oliveira JP, Cavaleiro AJ, Schell N, et al. Effects of laser processing on the transformation characteristics of NiTi: a contribute to additive manufacturing. Scr Mater 2018;152:122–126. doi:10.1016/j.scriptamat.2018.04.024
  • Saxena S, Sharma R, Kumar A. A microscale study of thermal field and stresses during processing of Ti6Al4V powder layer by selective laser melting. Lasers Manuf Mater Process. 2018;5(4):335–365. doi:10.1007/s40516-018-0070-6
  • Trempa M, Reimann C, Friedrich J, et al. Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals. J Cryst Growth. 2012;351(1):131–140. doi:10.1016/j.jcrysgro.2012.04.035
  • Dong A, Du D, Toursangsaraki M, et al. Overlap ratio and scanning strategy effects on laser powder bed fusion Ti6Al4V: numerical thermal modeling and experiments. Int J Adv Manuf Technol. 2023;125(7-8):3053–3067. doi:10.1007/s00170-023-10900-9
  • Trejos-Taborda J, Reyes-Osorio L, Garza C, et al. Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol. 2022;120(5-6):3947–3961. doi:10.1007/s00170-022-09029-y
  • Zhu J-N, Liu K, Riemslag T, et al. Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic design. Mater Des. 2023;230:111949. doi:10.1016/j.matdes.2023.111949
  • Shi G, Li L, Yu Z, et al. Effect of crystallographic anisotropy on phase transformation and tribological properties of Ni-rich NiTi shape memory alloy fabricated by LPBF. Opt Laser Technol. 2023;157:108731. doi:10.1016/j.optlastec.2022.108731
  • Gu D, He B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput Mater Sci. 2016;117:221–232. doi:10.1016/j.commatsci.2016.01.044
  • Gokcekaya O, Hayashi N, Ishimoto T, et al. Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance. Addit Manuf. 2020;36:101624. doi:10.1016/j.addma.2020.101624
  • Kruth JP, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 2007;56(2):730–759. doi:10.1016/j.cirp.2007.10.004
  • Becker TH, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals. Acta Mater. 2021;219:117240. doi:10.1016/j.actamat.2021.117240
  • Yuan D, Shao S, Guo C, et al. Grain refining of Ti-6Al-4 V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration. Ultrason Sonochem. 2021;73:105472. doi:10.1016/j.ultsonch.2021.105472
  • Song X, Liaw PK, Wei Z, et al. Evolution of the microstructures, magnetic and mechanical behaviors of Co47.5Fe28.5Ni19Si3.4Al1.6 high-entropy alloy fabricated by laser powder bed fusion. Addit Manuf. 2023;71:103593. doi:10.1016/j.addma.2023.103593
  • Xiong Z, Li Z, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol. 2019;35(10):2238–2242. doi:10.1016/j.jmst.2019.05.015
  • Bormann T, Schumacher R, Müller B, et al. Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform. 2012;21(12):2519–2524. doi:10.1007/s11665-012-0318-9
  • Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Superelasticity. 2016;2(4):310–316. doi:10.1007/s40830-016-0083-y
  • Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys. Scr Mater. 2018;146:164–168. doi:10.1016/j.scriptamat.2017.11.013
  • Frenzel J, George EP, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010;58(9):3444–3458. doi:10.1016/j.actamat.2010.02.019
  • Tang W, Sundman B, Sandström R, et al. New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater. 1999;47(12):3457–3468. doi:10.1016/S1359-6454(99)00193-7
  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Klassen A, Forster VE, Körner C. A multi-component evaporation model for beam melting processes. Simul Mater Sci Eng. 2017;25(2). doi:10.1088/1361-651X/aa5289
  • Alcock CB, Itkin VP, Horrigan MK. Vapour pressure equations for the metallic elements: 298–2500K. Metall Q. 1984;23(3):309–313. doi:10.1179/cmq.1984.23.3.309
  • Wang X, Yao X, Schryvers D, et al. Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window. Scr Mater. 2021;204:114135. doi:10.1016/j.scriptamat.2021.114135
  • Qin G. Effect of Ni content on the properties of NiTi shape memory alloys. Shanghai Steel Res. 1984;05:23–27+22.
  • Zhan J, Wu J, Ma R, et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion. J Mater Process Technol. 2023;317:117988. doi:10.1016/j.jmatprotec.2023.117988
  • Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270–284. doi:10.1016/j.jmst.2018.09.004
  • Nadammal N, Mishurova T, Fritsch T, et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit Manuf. 2021;38:101792. doi:10.1016/j.addma.2020.101792
  • Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components. Addit Manuf. 2020;36:101432. doi:10.1016/j.addma.2020.101432
  • Kotadia HR, Gibbons G, Das A, et al. A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: microstructure and properties. Addit Manuf. 2021;46:102155. doi:10.1016/j.addma.2021.102155
  • Lu D, Lin B, Liu T, et al. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys. J Mater Sci Technol. 2023;148:75–89. doi:10.1016/j.jmst.2022.10.085