144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure modulation and property enhancement via an underwater induction heating treatment strategy for underwater laser-directed energy deposition of Ti-6Al-4V

, , , , , & show all
Article: e2368659 | Received 19 Mar 2024, Accepted 08 Jun 2024, Published online: 04 Jul 2024

References

  • Kumar C, Das M, Paul CP, et al. Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4 V alloy. Opt Laser Technol. 2018;105:306–321. doi:10.1016/j.optlastec.2018.02.021
  • Wang W, Wang M, Jie Z, et al. Research on the microstructure and wear resistance of titanium alloy structural members repaired by laser cladding. Opt Lasers Eng. 2008;46(11):810–816. doi:10.1016/j.optlaseng.2008.05.015
  • Barui S, Panda AK, Naskar S, et al. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: quantitative process strategy for Ti-6Al-4 V. Biomaterials. 2019;213:119212. doi:10.1016/j.biomaterials.2019.05.023
  • Pushp P, Dasharath SM, Arati C. Classification and applications of titanium and its alloys. Mater Today Proc. 2022;54:537–542. doi:10.1016/j.matpr.2022.01.008
  • Rubino F, Nisticò A, Tucci F, et al. Marine application of fiber reinforced composites: a review. J Mar Sci Eng. 2020;8(1):26. doi:10.3390/jmse8010026
  • Di X, Ji S, Cheng F, et al. Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Mater Des. 2015;88:505–513. doi:10.1016/j.matdes.2015.09.025
  • Zhang X, Chen W, Ashida E, et al. Laser–material interaction and process sensing in underwater Nd: yttrium–aluminum–garnet laser welding. J Laser Appl. 2003;15(4):279–284. doi:10.2351/1.1620002
  • Feng X, Cui X, Jin G, et al. Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings. Surf Coat Tech. 2018;333:104–114. doi:10.1016/j.surfcoat.2017.10.056
  • Feng X, Cui X, Zheng W, et al. Performance of underwater laser cladded nickel aluminum bronze by applying zinc protective layer and titanium additives. J Mater Process Technol. 2018;266:544–550. doi:10.1016/j.jmatprotec.2018.11.036
  • Wang S, Wang Z, Yang K, et al. Investigation of on-site repair of 18Ni300 by underwater laser direct metal deposition technique. J Manuf Process. 2022;80:909–919. doi:10.1016/j.jmapro.2022.06.039
  • Wang ZD, Sun GF, Lu Y, et al. High-performance Ti-6Al-4 V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition. Surf Coat Tech. 2021;408:126778. doi:10.1016/j.surfcoat.2020.126778
  • Wang ZD, Sun GF, Chen MZ, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance. Addit Manuf. 2021;39:101884. doi:10.1016/j.addma.2021.101884
  • Wu E, Wang Z, Yang K, et al. Microstructure and mechanical properties of underwater laser deposition remanufactured 316LN stainless steel at a pressure of 0.3 MPa. Opt Laser Technol. 2022;155:108394. doi:10.1016/j.optlastec.2022.108394
  • Sano Y, Mukai N, Makino Y, et al. Enhancement of surface properties of metal materials by underwater laser processing. Rev Laser Eng. 2008;36(36):1195–1198. doi:10.2184/lsj.36.1195
  • Fu Y, Guo N, Zhou L, et al. Underwater wire-feed laser deposition of the Ti–6Al–4 V titanium alloy. Mater Des. 2020;186:108284. doi:10.1016/j.matdes.2019.108284
  • Fu Y, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment. Opt Laser Eng. 2020;131:106104. doi:10.1016/j.optlaseng.2020.106104
  • Fu Y, Guo N, Wang G, et al. Underwater additive manufacturing of Ti-6Al-4 V alloy by laser metal deposition: formability, gran growth and microstructure evolution. Mater Des. 2021;197:109196. doi:10.1016/j.matdes.2020.109196
  • Fu Y, Guo N, Zhou C, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment. J Mater Process Technol. 2021;289:116949. doi:10.1016/j.jmatprotec.2020.116949
  • Zhu Y, Tian X, Li J, et al. The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater Des. 2015;67:538–542. doi:10.1016/j.matdes.2014.11.001
  • Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A. 1998;243(1-2):32–45. doi:10.1016/S0921-5093(97)00778-8
  • Ruirun C, Deshuang Z, Jingjie G, et al. A novel method for grain refinement and microstructure modification in TiAl alloy by ultrasonic vibration. Mater Sci Eng A. 2016;653:23–26. doi:10.1016/j.msea.2015.12.001
  • Gupta RK, Kumar VA, Mathew C, et al. Strain hardening of titanium alloy Ti6Al4 V sheets with prior heat treatment and cold working. Mater Sci Eng A. 2016;662:537–550. doi:10.1016/j.msea.2016.03.094
  • Zhang Y, Feng L, Zhang T, et al. Heat treatment of additively manufactured Ti-6Al-4 V alloy: microstructure and electrochemical properties. J Alloys Compd. 2021;888:161602. doi:10.1016/j.jallcom.2021.161602
  • Wu SQ, Lu YJ, Gan YL, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4 V alloy after post heat treatments. J Alloys Compd. 2016;672:643–652. doi:10.1016/j.jallcom.2016.02.183
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti–6Al–4 V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. doi:10.1016/j.actamat.2014.11.028
  • Kaschel FR, Vijayaraghavan RK, Shmeliov A, et al. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4 V via in situ high temperature XRD and TEM analyses. Acta Mater. 2020;188:720–732. doi:10.1016/j.actamat.2020.02.056
  • Nicoletto G, Maisano S, Antolotti M, et al. Influence of post fabrication heat treatments on the fatigue behavior of Ti-6Al-4 V produced by selective laser melting. Procedia Structural Integrity. 2017;7:133–140. doi:10.1016/j.prostr.2017.11.070
  • Zhang XY, Fang G, Leeflang S, et al. Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4 V alloy. J Alloys Compd. 2018;735:1562–1575. doi:10.1016/j.jallcom.2017.11.263
  • Vilaro T, Colin C, Bartout JD. As-fabricated and heat-treated microstructures of the Ti-6Al-4 V alloy processed by selective laser melting. Metall Mater Trans A. 2011;42(10):3190–3199. doi:10.1007/s11661-011-0731-y
  • Ter Haar GM, Becker TH. Selective laser melting produced Ti-6Al-4V: post-process heat treatments to achieve superior tensile properties. Materials (Basel). 2018;11(1):146. doi:10.3390/ma11010146
  • Shen H, Lin J, Zhou Z, et al. Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing. J Manuf Process. 2022;75:331–345. doi:10.1016/j.jmapro.2022.01.018
  • Liu J, Zhang K, Gao X, et al. Effects of the morphology of grain boundary α-phase on the anisotropic deformation behaviors of additive manufactured Ti–6Al–4 V. Mater Des. 2022;223:111150. doi:10.1016/j.matdes.2022.111150
  • Su J, Ji X, Liu J, et al. Revealing the decomposition mechanisms of dislocations and metastable α'phase and their effects on mechanical properties in a Ti-6Al-4 V alloy. J Mater Sci Technol. 2022;107:136–148. doi:10.1016/j.jmst.2021.07.048
  • Hayes BJ, Martin BW, Welk B, et al. Predicting tensile properties of Ti-6Al-4 V produced via directed energy deposition. Acta Mater. 2017;133:120–133. doi:10.1016/j.actamat.2017.05.025
  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti–6Al–4 V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320. doi:10.1016/j.actamat.2014.12.054
  • Semiatin SL, Brown TM, Goff TA, et al. Diffusion coefficients for modeling the heat treatment of Ti-6Al-4 V. Metall Mater Trans A. 2004;35:3015–3018. doi:10.1007/s11661-004-0250-1
  • Lv J, Alexandrov IV, Luo K, et al. Microstructural evolution and anisotropic regulation in tensile property of cold metal transfer additive manufactured Ti6Al4 V alloys via ultrasonic impact treatment. Mater Sci Eng A. 2022;859:144177. doi:10.1016/j.msea.2022.144177
  • Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys. Isij Int. 2003;43(9):1475–1477. doi:10.2355/isijinternational.43.1475
  • Huang S, Ma Y, Zhang S, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical propertiesin α+β titanium alloy. Acta Metall Sin. 2019;55(6):741–750. doi:10.11900/0412.1961.2018.00460
  • Zhang R, Ma Y, Jia Y, et al. Microstructure evolution and element partitioning behavior during heat-treatment in metastable β titanium alloy. Chinese J Mater Res. 2022;37(3):161–167. doi:10.11901/1005.3093.2019.110
  • Wang Z, Huang S, Lu H, et al. The role of annealing heat treatment in high-temperature oxidation resistance of laser powder bed fused Ti6Al4 V alloy subjected to massive laser shock peening treatment. Corros Sci. 2022;209:110732. doi:10.1016/j.corsci.2022.110732
  • Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α–β phase transformation kinetics of a bi-modal Ti–6Al–6V–2Sn alloy during continuous heating. J Alloys Compd. 2015;626:330–339. doi:10.1016/j.jallcom.2014.11.176
  • Popov AA, Illarionov AG, Stepanov SI, et al. Effect of quenching temperature on structure and properties of titanium alloy: structure and phase composition. Phys Met Metallogr. 2014;115:507–516. doi:10.1134/S0031918X14050068
  • Xu G, Song C, Zhang H, et al. Spatially heterogeneous microstructure in in-situ TiO-reinforced Ti6Al4 V/316L functionally graded material fabricated via directed energy deposition. Addit Manuf. 2022;59:103178. doi:10.1016/j.addma.2022.103178
  • Lu H, Wu L, Wei H, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4 V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Addit Manuf. 2022;55:102877. doi:10.1016/j.addma.2022.102877
  • Xu W, Lui EW, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4 V for superior mechanical performance. Acta Mater. 2017;125:390–400. doi:10.1016/j.actamat.2016.12.027
  • Xu Y, Lu Y, Sundberg KL, et al. Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4 V. J Mater Eng Perform. 2017;26:2572–2582. doi:10.1007/s11665-017-2710-y
  • Neikter M, Huang A, Wu X. Microstructural characterization of binary microstructure pattern in selective laser-melted Ti-6Al-4 V. Int J Adv Manuf Technol. 2019;104:1381–1391. doi:10.1007/s00170-019-04002-8
  • Sumino K, Yonenaga I. Dislocation dynamics and mechanical behaviour of elemental and compound semiconductors. Physica Status Solidi (a). 1993;138(2):573–581. doi:10.1002/pssa.2211380225
  • Wang Z, Bian H, Lu H, et al. Significant improvement in the strength-toughness and isotropy of laser powder bed fused Ti6Al4 V alloy by combining heat treatment with subsequent laser shock peening. Mater Sci Eng A. 2023;880:145365. doi:10.1016/j.msea.2023.145365