168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wire-arc directed energy deposition of metal using a tendon-driven soft robotic gun: prototyping and conceptual validation

, , ORCID Icon, , , , , & show all
Article: e2369720 | Received 06 Mar 2024, Accepted 12 Jun 2024, Published online: 15 Jul 2024

References

  • Armstrong M, Mehrabi H, Naveed N. An overview of modern metal additive manufacturing technology. J Manuf Process. 2022;84:1001–1029. doi:10.1016/j.jmapro.2022.10.060
  • Kanishka K, Acherjee B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J Manu Process. 2023;89:220–283. doi:10.1016/j.jmapro.2023.01.034
  • Liu H, Wang S, Chen H, et al. Drop and hump behaviors in robotic arc-directed energy deposition with vertical position. Addit Manuf. 2024;82:104049. doi:10.1016/j.addma.2024.104049
  • He T, Yu S, Shi Y, et al. Forming and mechanical properties of wire arc additive manufacture for marine propeller bracket. J Manuf Process. 2020;52:96–105. doi:10.1016/j.jmapro.2020.01.053
  • Xiong J, Wen C. Arc plasma, droplet, and forming behaviors in bypass wire arc-directed energy deposition. Addit Manuf. 2023;70:103558. doi:10.1016/j.addma.2023.103558
  • Lehmann T, Rose D, Ranjbar E, et al. Large-scale metal additive manufacturing: a holistic review of the state of the art and challenges. Int Mater Rev. 2022;67(4):410–459. doi:10.1080/09506608.2021.1971427
  • Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture. P I Mech Eng Part B: J Eng Manu. 2012;226(6):1042–1051. doi:10.1177/0954405412437126
  • Aprilia A, Wu N, Zhou W. Repair and restoration of engineering components by laser directed energy deposition. Mater Today Proc. 2022;70:206–211. doi:10.1016/j.matpr.2022.09.022
  • Rus D, Tolley M. Design, fabrication and control of soft robots. Nature. 2015;521(7553):467–475. doi:10.1038/nature14543
  • Seleem I, El-Hussieny H, Ishii H. Recent developments of actuation mechanisms for continuum robots: a review. Int J Control Auto. 2023;21(5):1592–1609. doi:10.1007/s12555-022-0159-8
  • Schmitt F, Piccin O, Barbé L, et al. Soft robots manufacturing: A review. Front Robot AI. 2018;5:84. doi:10.3389/frobt.2018.00084
  • Gupta U, Qin L, Wang Y, et al. Soft robots based on dielectric elastomer actuators: A review. Smart Mater Struct. 2019;28(10):103002. doi:10.1088/1361-665X/ab3a77
  • Yasa O, Toshimitsu Y, Michelis M, et al. An overview of soft robotics. Annu Rev Control Robot Auton Syst. 2023;6(1):1–29. doi:10.1146/annurev-control-062322-100607
  • Zhang J, Fang Q, Xiang P, et al. A survey on design, actuation, modeling, and control of continuum robot. Cyborg Bionic Syst. 2022;2022. doi:10.34133/2022/9754697
  • Gunderman A, Collins J, Myers A, et al. Tendon-driven soft robotic gripper for blackberry harvesting. IEEE Robot Autom Lett. 2022;7(2):2652–2659. doi:10.1109/LRA.2022.3143891
  • Dinakaran V, Balasubramaniyan M, Muthusamy S, et al. Performa of SCARA based intelligent 3 axis robotic soft gripper for enhanced material handling. Adv Eng Softw. 2023;176:103366. doi:10.1016/j.advengsoft.2022.103366
  • Jolaei M, Hooshiar A, Dargahi J, et al. Toward task autonomy in robotic cardiac ablation: learning-based kinematic control of soft tendon-driven catheters. Soft Robot. 2021;8(3):340–351. doi:10.1089/soro.2020.0006
  • Jiang S, Wang Y, Ju F, et al. A new fuzzy time-delay control for cable-driven robot. Int J Adv Robot Syst. 2019;16(2):172988141983501. doi:10.1177/1729881419835017
  • Ataka A, Qi P, Liu H, et al. Real-time planner for multi-segment continuum manipulator in dynamic environments. 2016 IEEE International Conference on Robotics and Automation (ICRA) 2016:4080–4085. doi:10.1109/ICRA.2016.7487598
  • Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators: A survey. Soft Robot. 2018;5(2):149–163. doi:10.1089/soro.2017.0007
  • Bajo A, Simaan N. Hybrid motion/force control of multi-backbone continuum robots. Int J Robot Res. 2016;35(4):422–434. doi:10.1177/0278364915584806
  • Li Z, Wu L, Ren H, et al. Kinematic comparison of surgical tendon-driven manipulators and concentric tube manipulators. Mech Mach Theory. 2017;107:148–165. doi:10.1016/j.mechmachtheory.2016.09.018
  • Lai J, Lu B, Chu H. Variable-Stiffness control of a dual-segment soft robot using depth vision. IEEE-ASME Trans Mechatron. 2022;27(2):1034–1045. doi:10.1109/TMECH.2021.3078466
  • Sapai S, Loo J, Ding Z, et al. A deep learning framework for soft robots with synthetic data. Soft Robot. 2023;10(6):1224–1240. doi:10.1089/soro.2022.0188
  • Boettcher G, Lilge S, Burgner-Kahrs J. Design of a reconfigurable parallel continuum robot With tendon-actuated kinematic chains. IEEE Robot Autom Lett. 2021;6(2):1272–1279. doi:10.1109/LRA.2021.3057557
  • Dong X, Raffles M, Cobos-Guzman S, et al. A novel continuum robot using twin-pivot compliant joints: design, modeling, and validation. J Mech Robot. 2016;8(2). doi:10.1115/1.4031340
  • Xing Z, Wang F, Ji Y, et al. A structure for fast stiffness-variation and omnidirectional-steering continuum manipulator. IEEE Robot Autom Lett. 2021;6(2):755–762. doi:10.1109/LRA.2020.3037858
  • Hitchin P. Getting innovation into decommissioning. Nucl Eng Int. 2017;62(751):20–23.
  • Zhao X, Liu C, Dou L, et al. 3D visual sensing technique based on focal stack for snake robotic applications. Results Phys. 2019;12:1520–1528. doi:10.1016/j.rinp.2019.01.045
  • Qin L, Tang Y, Gupta U, et al. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance. Smart Mater Struct. 2018;27(4):045017. doi:10.1088/1361-665X/aab393
  • Lee J, Lee C, Kim D. Repair of damaged parts using wire arc additive manufacturing in machine tools. J Mater Res Technol. 2022;16:13–24. doi:10.1016/j.jmrt.2021.11.156
  • Li X, Han Q, Zhang G. Large-size sprocket repairing based on robotic GMAW additive manufacturing. Weld World. 2021;65(5):793–805. doi:10.1007/s40194-021-01080-9
  • Lant T, Robinson D, Spafford B, et al. Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking. Int J Pres Vessels Pip. 2001;78(11):813–818. doi:10.1016/S0308-0161(01)00094-1
  • Yu Y, Xiong J, Chen Y, et al. Process stability control of corner structures in robotic gas tungsten arc additive manufacturing via arc sensing. J Manuf Process. 2023;101:156–170. doi:10.1016/j.jmapro.2023.05.076
  • Yuan L, Ding D, Pan Z, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts. IEEE Trans Industr Inform. 2020;16(1):454–464. doi:10.1109/TII.2019.2935233
  • Cai X, Lin S, Fan C, et al. Molten pool behaviour and weld forming mechanism of tandem narrow gap vertical GMAW. Sci Technol Weld Join. 2016;21(2):124–130. doi:10.1179/1362171815Y.0000000073
  • Everett L, Driels M, Mooring B. Kinematic modelling for robot calibration. Proceedings of the 1987 IEEE International Conference on Robotics and Automation (ICRA). 1987:183–189. doi:10.1109/ROBOT.1987.1087818
  • Han J, Han Z, Liu Z. Adaptive control for a constrained soft manipulator with prescribed performance. IFAC-PapersOnLine. 2020;53(5):524–529. doi:10.1016/j.ifacol.2021.04.198
  • Webster R, Jones B. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robot Res. 2010;29(13):1661–1683. doi:10.1177/0278364910368147
  • Peng J, Xu W, Liu T, et al. End-effector pose and arm-shape synchronous planning methods of a hyper-redundant manipulator for spacecraft repairing. Mec Mac Theory. 2021;155:104062. doi:10.1016/j.mechmachtheory.2020.104062
  • Xu W, Mu Z, Liu T, et al. A modified modal method for solving the mission-oriented inverse kinematics of hyper-redundant space manipulators for on-orbit servicing. Acta Astronaut. 2017;139:54–66. doi:10.1016/j.actaastro.2017.06.015
  • Simas H, Gregorio R. Smooth transition for collision avoidance of redundant robots: an on-line polynomial approach. Robot Comput Integr Manuf. 2021;72:102087. doi:10.1016/j.rcim.2020.102087
  • Ščetinec A, Klobčar D, Bračun D. In-process path replanning and online layer height control through deposition arc current for gas metal arc based additive manufacturing. J Manuf Process. 2021;64:1169–1179. doi:10.1016/j.jmapro.2021.02.038