374
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved properties of wire arc directed energy deposited thin-walled Al-6Mg-0.3Sc component via laser shock peening

ORCID Icon, ORCID Icon, , , , , , , & show all
Article: e2370956 | Received 29 Feb 2024, Accepted 17 Jun 2024, Published online: 04 Jul 2024

References

  • Li Y, Su C, Zhu J. Comprehensive review of wire arc additive manufacturing: hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022;13:100330. doi:10.1016/j.rineng.2021.100330
  • Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3% Cu alloy. Int J Adv Manuf Technol. 2015;76:1593–1606. doi:10.1007/s00170-014-6346-x
  • Zhou Y, Chang T, Fang X, et al. Tailoring the mechanical properties and thermal stability of additive manufactured micro-alloyed Al-Cu alloy via multi-stage heat treatment. Mater Des. 2023;233:112287. doi:10.1016/j.matdes.2023.112287
  • Guo Y, Han Q, Lu W, et al. Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys. Virtual Phys Prototyp. 2022;17:649–661. doi:10.1080/17452759.2022.2048236
  • Gu J, Yang S, Gao M, et al. Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling. Mater Design. 2020;186:108288. doi:10.1016/j.matdes.2019.108288
  • Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering. Mater Sci Eng: A. 2021;800:140168. doi:10.1016/j.msea.2020.140168
  • Dong W, Jimenez XA, To AC. Temperature-dependent modified inherent strain method for predicting residual stress and distortion of Ti6Al4V walls manufactured by wire-arc directed energy deposition. Addit Manuf. 2023;62:103386. doi:10.1016/j.addma.2022.103386
  • Gu J, Ding J, Williams SW, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J Mater Process Technol. 2016;230:26–34. doi:10.1016/j.jmatprotec.2015.11.006
  • Panchenko O, Kurushkin D, Mushnikov I, et al. A high-performance WAAM process for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed. Mater Design. 2020;195:109040. doi:10.1016/j.matdes.2020.109040
  • Ren L, Gu H, Wang W, et al. The microstructure and properties of an Al-Mg-0.3Sc alloy deposited by wire Arc additive manufacturing. Metals. 2020;10:320. doi:10.3390/met10030320
  • Ma S, Jiang M, Chen X, et al. Macro/micro-structure and mechanical properties of Al-6Mg-0.3Sc alloy fabricated by oscillating laser-arc hybrid additive manufacturing. J Alloys Compd. 2022;929:167325. doi:10.1016/j.jallcom.2022.167325
  • Xia Y, Cai X, Dong B, et al. Wire arc additive manufacturing of Al-Mg-Sc alloy: An analysis of the effect of Sc on microstructure and mechanical properties. Mater Charact. 2023;203:113116. doi:10.1016/j.matchar.2023.113116
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • Kendig KL, Miracle DB. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 2002;50:4165–4175. doi:10.1016/S1359-6454(02)00258-6
  • Geng H, Li J, Xiong J, et al. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26:621–629. doi:10.1007/s11665-016-2480-y
  • Ma PP, Liu CH, Wu CL, et al. Mechanical properties enhanced by deformation-modified precipitation of θ′-phase approximants in an Al-Cu alloy. Mater Sci Eng: A. 2016;676:138–145. doi:10.1016/j.msea.2016.08.068
  • Deng W, Wang C, Lu H, et al. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: A comprehensive review. Int J Mach Tools Manuf. 2023;191:104061. doi:10.1016/j.ijmachtools.2023.104061
  • Ren XD, Zhang YK, Yongzhuo HF, et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy. Mater Sci Eng: A. 2011;528:2899–2903. doi:10.1016/j.msea.2010.12.058
  • Lu J, Lu H, Xu X, et al. High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components. Int J Mach Tools Manuf. 2020;148:103475. doi:10.1016/j.ijmachtools.2019.103475
  • Lu H, Wu L, Wei H, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4 V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Addit Manuf. 2022;55:102877. doi:10.1016/j.addma.2022.102877
  • Lu H, Deng W, Luo K, et al. Tailoring microstructure of additively manufactured Ti6Al4V titanium alloy using hybrid additive manufacturing technology. Addit Manuf. 2023;63:103416. doi:10.1016/j.addma.2023.103416
  • Lv J, Luo K, Lu H, et al. Achieving high strength and ductility in selective laser melting Ti-6Al-4V alloy by laser shock peening. J Alloys Compd. 2022;899:163335. doi:10.1016/j.jallcom.2021.163335
  • Sun R, Li L, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J Alloys Compd. 2018;747:255–265. doi:10.1016/j.jallcom.2018.02.353
  • Li X, Fang X, Zhang M, et al. Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening. Int J Mach Tools Manuf. 2023;188:104029. doi:10.1016/j.ijmachtools.2023.104029
  • Jing Y, Fang X, Geng Y, et al. Simultaneous strength and ductility enhancement of wire-arc directed energy deposited Al–Cu alloy by interlayer laser shock peening. Mater Sci Eng: A. 2023;887:145699. doi:10.1016/j.msea.2023.145699
  • Chang T, Fang X, Liu G, et al. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys. J Mater Sci Technol. 2022;124:65–75. doi:10.1016/j.jmst.2022.02.024
  • Chang T, Zhang H, Fang X, et al. Tailoring precipitation of directed energy deposited Al-Cu alloy via laser shock peening. Addit. Manuf. 2023;73:103652. doi:10.1016/j.addma.2023.103652
  • Trdan U, Skarba M, Grum J. Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy. Mater. Charact. 2014;97:57–68. doi:10.1016/j.matchar.2014.08.020
  • Zhi H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel. Acta Mater. 2020;195:371–382. doi:10.1016/j.actamat.2020.05.062
  • Goswami R, Spanos G, Pao PS, et al. Precipitation behavior of the ß phase in Al-5083. Mater Sci Eng: A. 2010;527:1089–1095. doi:10.1016/j.msea.2009.10.007
  • Lu JZ, Luo KY, Zhang YK, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Mater. 2010;58:3984–3994. doi:10.1016/j.actamat.2010.03.026
  • Yang Y, Lian X, Zhou K, et al. Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy, J. Alloys Compd. 2019;781:330–336. doi:10.1016/j.jallcom.2018.12.118
  • Dong B, Cai X, Lin S, et al. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties. Addit Manuf. 2020;36:101447. doi:10.1016/j.addma.2020.101447
  • Dai W, Guo W, Xiao J, et al. Tailoring properties of directed energy deposited Al-Mg alloy by balancing laser shock peening and heat treatment. J Mater Sci Technol. 2024;203:78–96. doi:10.1016/j.jmst.2024.03.051
  • Chi J, Cai Z, Zhang H, et al. Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes. Mater Design. 2021;203:109626. doi:10.1016/j.matdes.2021.109626
  • Zhang Y, Guo W, Shi J, et al. Improved rotating bending fatigue performance of laser directed energy deposited Ti6Al4 V alloys by laser shock peening. J Alloys Compd. 2024;980:173664. doi:10.1016/j.jallcom.2024.173664
  • Wang Y, Yang B, Gao M, et al. Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6 Mg alloys. Mater Design. 2022;220:110849. doi:10.1016/j.matdes.2022.110849
  • Wang Z, Lin X, Wang J, et al. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit Manuf. 2022;59:103093. doi:10.1016/j.addma.2022.103093
  • Wang Z, Lin X, Kang N, et al. Directed energy deposition additive manufacturing of a Sc/Zr-modified Al-Mg alloy: effect of thermal history on microstructural evolution and mechanical properties. Mater Sci Eng: A. 2021;802:140606. doi:10.1016/j.msea.2020.140606
  • Sales A, Ricketts NJ. Effect of scandium on wire Arc additive manufacturing of 5 series aluminium alloys. In: C Chesonis, editor. Light metals 2019. Cham: Springer International Publishing; 2019. p. 1455–1461. doi:10.1007/978-3-030-05864-7_182
  • Ponomareva T, Ponomarev M, Kisarev A, et al. Wire arc additive manufacturing of Al-Mg alloy with the addition of scandium and zirconium. Materials. 2021;14:3665. doi:10.3390/ma14133665
  • Ma S, Chen X, Jiang M, et al. Surface morphology, microstructure and mechanical properties of Al–Mg–Sc alloy thin wall produced by laser-arc hybrid additive manufacturing. Thin Wall Struct. 2023;186:110674. doi:10.1016/j.tws.2023.110674
  • Xie C, Wu S, Yu Y, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling. J Mater Process Technol. 2021;291:117039. doi:10.1016/j.jmatprotec.2020.117039
  • Muzyk M, Pakiela Z, Kurzydlowski KJ. Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr Mater. 2011;64:916–918. doi:10.1016/j.scriptamat.2011.01.034
  • Dong B, Cai X, Xia Y, et al. Effects of interlayer temperature on the microstructures of wire arc additive manufactured Al-Zn-Mg-Cu alloy: insights into texture responses and dynamic precipitation behaviors. Addit Manuf. 2021;48:102453. doi:10.1016/j.addma.2021.102453
  • Huang K, Marthinsen K, Zhao Q, et al. Logé, The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog Mater Sci. 2018;92:284–359. doi:10.1016/j.pmatsci.2017.10.004
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207. doi:10.1016/j.pmatsci.2013.09.002
  • Sauvage X, Duchaussoy A, Zaher G. Strain induced segregations in severely deformed materials. Mater Trans. 2019;60:1151–1158. doi:10.2320/matertrans.MF201919
  • Valiev RZ, Enikeev NA, Murashkin MY, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr Mater. 2010;63:949–952. doi:10.1016/j.scriptamat.2010.07.014
  • Sauvage X, Enikeev N, Valiev R, et al. Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Mater. 2014;72:125–136. doi:10.1016/j.actamat.2014.03.033
  • Amouyal Y, Divinski SV, Klinger L, et al. Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing. Acta Mater. 2008;56:5500–5513. doi:10.1016/j.actamat.2008.07.029
  • Xiao X, Guo Y, Zhang R, et al. Achieving uniform plasticity in a high strength Al-Mn-Sc based alloy through laser-directed energy deposition. Addit Manuf. 2022;60:103273. doi:10.1016/j.addma.2022.103273
  • Kumar N, Mishra RS. Additivity of strengthening mechanisms in ultrafine grained Al–Mg–Sc alloy. Mater Sci Eng: A. 2013;580:175–183. doi:10.1016/j.msea.2013.05.006
  • Kamikawa N, Huang X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009;57:4198–4208. doi:10.1016/j.actamat.2009.05.017
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398. doi:10.1080/21663831.2019.1616331
  • Zhou Y, Fang X, Lin X, et al. Tensile deformation behavior of triple heterogeneous microstructure comprising fine equiaxed/coarse equiaxed/columnar grains in AlCu/AlMgSc bimetal fabricated via dual-wire arc direct energy deposition. J Mater Sci Technol. 2024: S100503022400015X. doi:10.1016/j.jmst.2023.11.026
  • Li G, Jiang J, Ma H, et al. Superior strength–ductility synergy in three-dimensional heterogeneous-nanostructured metals. Acta Mater. 2023;256:119143. doi:10.1016/j.actamat.2023.119143
  • Zhu Y, Wu X. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Ren XD, Huang JJ, Zhou WF, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing. Mater Des. 2015;86:421–426. doi:10.1016/j.matdes.2015.07.039
  • Zhou W, Ren X, Liu F, et al. Nanocrystallization in the duplex Ti-6Al-4V alloy processed by multiple laser shock peening. Metals. 2016;6:297. doi:10.3390/met6120297
  • Jing Y, Fang X, Xi N, et al. Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening. Mater Charact. 2021;182:111571. doi:10.1016/j.matchar.2021.111571
  • Tong Z, Liu H, Jiao J, et al. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit Manuf. 2020;35:101417. doi:10.1016/j.addma.2020.101417
  • Ren CX, Wang Q, Zhang ZJ, et al. Surface strengthening behaviors of four structural steels processed by surface spinning strengthening. Mater Sci Eng A. 2017;704:262–273. doi:10.1016/j.msea.2017.08.007